Skip to main content

GMDA: An Automatic Data Analysis System for Industrial Production

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12114))

Included in the following conference series:

  • 2324 Accesses

Abstract

Data-driven method has shown many advantages over experience- and mechanism-based approaches in optimizing production. In this paper, we propose an AI-driven automatic data analysis system. The system is developed for small and medium-sized industrial enterprises who are lack of expertise on data analysis. To achieve this goal, we design a structural and understandable task description language for problem modeling, propose an supervised learning method for algorithm selecting and implement a random search algorithm for hyper-parameter optimization, which makes our system highly-automated and generic. We choose R language as the algorithm engine due to its powerful analysis performance. The system reliability is ensured by an interactive analysis mechanism. Examples show how our system can apply to representative analysis tasks in manufactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IBM SPSS Modeler. https://www.ibm.com/products/spss-modeler. Accessed 10 Jan 2020

  2. SAS. https://www.sas.com/en_us/home.html. Accessed 10 Jan 2020

  3. Castiello, C., Castellano, G., Fanelli, A.M.: Meta-data: characterization of input features for meta-learning. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 457–468. Springer, Heidelberg (2005). https://doi.org/10.1007/11526018_45

    Chapter  MATH  Google Scholar 

  4. Hwang, Y., Tong, A., Choi, J.: Automatic construction of nonparametric relational regression models for multiple time series. In: International Conference on Machine Learning, pp. 3030–3039 (2016)

    Google Scholar 

  5. Zhang, H., Wang, H., Li, J., Gao, H.: A generic data analytics system for manufacturing production. Big Data Min. Anal. 1(2), 160–171 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was partially supported by NSFC grant U1866602, 61602129, 61772157, CCF-Huawei Database System Innovation Research Plan DBIR2019005B and Microsoft Research Asia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Z., Wang, H., Zhang, H., Guo, H. (2020). GMDA: An Automatic Data Analysis System for Industrial Production. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12114. Springer, Cham. https://doi.org/10.1007/978-3-030-59419-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59419-0_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59418-3

  • Online ISBN: 978-3-030-59419-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics