Skip to main content

Deep Discriminative Learning for Autism Spectrum Disorder Classification

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12391))

Included in the following conference series:

Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficiencies in social, communication and repetitive behaviors. We propose imaging-based ASD biomarkers to find the neural patterns related ASD as the primary goal of identifying ASD. The secondary goal is to investigate the impact of imaging-patterns for ASD. In this paper, we model and explore the identification of ASD by learning a representation of the T1 MRI and fMRI by fusioning a discriminative learning (DL) approach and deep convolutional neural network. Specifically, a class-wise analysis dictionary to generate non-negative low-rank encoding coefficients with the multi-model data, and an orthogonal synthesis dictionary to reconstruct the data. Then, we map the reconstructed data with the original multi-modal data as input of the deep learning model. Finally, the learned priors from both model are returned to the fusion framework to perform classification. The effectiveness of the proposed approach was tested on a world-wide cross-site (34) database of 1127 subjects, experiments show competitive results of the proposed approach. Furthermore, we were able to capture the status of brain neural patterns with the known input of the same modality.

A. Evans and J. P. Poline—co-last author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://paris-saclay-cds.github.io/autism_challenge/.

  2. 2.

    https://paris-saclay-cds.github.io/autism_challenge/.

References

  1. Chaddad, A., Rathore, S., Zhang, M., Desrosiers, C., Niazi, T.: Deep radiomic features from mri scans predict survival outcome of recurrent glioblastoma (2019). arXiv preprint arXiv:1911.06687

  2. Gu, S., Zhang, L., Zuo, W., Feng, X.: Projective dictionary pair learning for pattern classification. In: Advances in Neural Information Processing Systems, pp. 793–801 (2014)

    Google Scholar 

  3. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

    Google Scholar 

  4. Li, J., Wu, Y., Zhao, J., Lu, K.: Low-rank discriminant embedding for multiview learning. IEEE Trans. Cybern. 47(11), 3516–3529 (2017)

    Article  Google Scholar 

  5. Tong, T., Gao, Q., Guerrero, R., Ledig, C., Chen, L., Rueckert, D., Alzheimer’s Disease Neuroimaging Initiative et al.: A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer’s disease. IEEE Trans. Biomed. Eng. 64(1), 155–165 (2017)

    Google Scholar 

  6. Varoquaux, G., Gramfort, A., Pedregosa, F., Michel, V., Thirion, B.: Multi-subject dictionary learning to segment an atlas of brain spontaneous activity. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 562–573. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_46

    Chapter  Google Scholar 

  7. Wang, M., Zhang, D., Huang, J., Shen, D., Liu, M.: Low-rank representation for multi-center autism spectrum disorder identification. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 647–654. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_73

    Chapter  Google Scholar 

  8. Zhang, M., Desrosiers, C.: High-quality image restoration using low-rank patch regularization and global structure sparsity. IEEE Trans. Image Process. 28(2), 868–879 (2019)

    Article  MathSciNet  Google Scholar 

  9. Zhang, M., Desrosiers, C., Guo, Y., Zhang, C., Khundrakpam, B., Evans, A.: Brain status prediction with non-negative projective dictionary learning. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 152–160. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_18

    Chapter  Google Scholar 

  10. Zhang, M., Desrosiers, C., Zhang, C.: Atlas-based reconstruction of high performance brain MR data. Pattern Recogn. 76, 549–559 (2018)

    Article  Google Scholar 

  11. Zhang, M., Guo, Y., Zhang, C., Poline, J.-B., Evans, A.: Modeling and analysis brain development via discriminative dictionary learning. In: Knoll, F., Maier, A., Rueckert, D., Ye, J.C. (eds.) MLMIR 2019. LNCS, vol. 11905, pp. 80–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33843-5_8

    Chapter  Google Scholar 

  12. Zhao, Yu., Ge, F., Zhang, S., Liu, T.: 3D deep convolutional neural network revealed the value of brain network overlap in differentiating autism spectrum disorder from healthy controls. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 172–180. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_20

    Chapter  Google Scholar 

  13. Zheng, W., Eilamstock, T., Wu, T., Spagna, A., Chen, C., Hu, B., Fan, J.: Multi-feature based network revealing the structural abnormalities in autism spectrum disorder. IEEE Trans. Affect. Comput. (2019)

    Google Scholar 

Download references

Acknoledgements

This work was supported, in part, by the Fonds de recherche du Quebec (CCC 246110, 271636), National Nature Science Foundation of China (NSFC: 61902220), Shandong Province grant (ZR2018BF009) and the Science and Technology Innovation Fund Project of Dalian, China (No.2019J13SN100).

J.-B.P. was partially funded by National Institutes of Health (NIH) NIH-NIBIB P41 EB019936 (ReproNim) NIH-NIMH R01 MH083320 (CANDIShare) and NIH RF1 MH120021 (NIDM), the National Institute Of Mental Health of the NIH under Award Number R01MH096906 (Neurosynth), as well as the Canada First Research Excellence Fund, awarded to McGill University for the Healthy Brains for Healthy Lives initiative and the Brain Canada Foundation with support from Health Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingli Zhang or Xin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, M., Zhao, X., Zhang, W., Chaddad, A., Evans, A., Poline, J.B. (2020). Deep Discriminative Learning for Autism Spectrum Disorder Classification. In: Hartmann, S., Küng, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2020. Lecture Notes in Computer Science(), vol 12391. Springer, Cham. https://doi.org/10.1007/978-3-030-59003-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59003-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59002-4

  • Online ISBN: 978-3-030-59003-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics