Abstract
Domain generalization models learn to generalize to previously unseen domains, but suffer from prediction uncertainty and domain shift. In this paper, we address both problems. We introduce a probabilistic meta-learning model for domain generalization, in which classifier parameters shared across domains are modeled as distributions. This enables better handling of prediction uncertainty on unseen domains. To deal with domain shift, we learn domain-invariant representations by the proposed principle of meta variational information bottleneck, we call MetaVIB. MetaVIB is derived from novel variational bounds of mutual information, by leveraging the meta-learning setting of domain generalization. Through episodic training, MetaVIB learns to gradually narrow domain gaps to establish domain-invariant representations, while simultaneously maximizing prediction accuracy. We conduct experiments on three benchmarks for cross-domain visual recognition. Comprehensive ablation studies validate the benefits of MetaVIB for domain generalization. The comparison results demonstrate our method outperforms previous approaches consistently.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. In: International Conference on Learning Representations (2017)
Amjad, R.A., Geiger, B.C.: Learning representations for neural network-based classification using the information bottleneck principle. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2019)
Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: Advances in Neural Information Processing Systems (2016)
Balaji, Y., Sankaranarayanan, S., Chellappa, R.: MetaReg: towards domain generalization using meta-regularization. In: Advances in Neural Information Processing Systems, pp. 998–1008 (2018)
Bertinetto, L., Henriques, J.F., Valmadre, J., Torr, P.H.S., Vedaldi, A.: Learning feed-forward one-shot learners. In: Advances in Neural Information Processing Systems (2016)
Blanchard, G., Lee, G., Scott, C.: Generalizing from several related classification tasks to a new unlabeled sample. In: Advances in Neural Information Processing Systems, pp. 2178–2186 (2011)
Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. In: Advances in Neural Information Processing Systems, pp. 343–351 (2016)
Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
Choi, M.J., Lim, J.J., Torralba, A., Willsky, A.S.: Exploiting hierarchical context on a large database of object categories. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 129–136. IEEE (2010)
Dou, Q., de Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. In: Advances in Neural Information Processing Systems, pp. 6447–6458 (2019)
D’Innocente, A., Caputo, B.: Domain generalization with domain-specific aggregation modules. In: Brox, T., Bruhn, A., Fritz, M. (eds.) GCPR 2018. LNCS, vol. 11269, pp. 187–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12939-2_14
Erfani, S., et al.: Robust domain generalisation by enforcing distribution invariance. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1455–1461 (2016)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of International Conference on Machine Learning, pp. 1126–1135 (2017)
Finn, C., Levine, S.: Meta-learning and universality: deep representations and gradient descent can approximate any learning algorithm. In: International Conference on Learning Representations (2018)
Finn, C., Xu, K., Levine, S.: Probabilistic model-agnostic meta-learning. In: Advances in Neural Information Processing Systems, pp. 9516–9527 (2018)
Ghifary, M., Bastiaan Kleijn, W., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: The IEEE International Conference on Computer Vision, pp. 2551–2559 (2015)
Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., Turner, R.E.: Meta-learning probabilistic inference for prediction. arXiv preprint arXiv:1805.09921 (2018)
Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (2014)
Kolchinsky, A., Tracey, B.D., Van Kuyk, S.: Caveats for information bottleneck in deterministic scenarios. arXiv preprint arXiv:1808.07593 (2018)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: meta-learning for domain generalization. In: 32nd AAAI Conference on Artificial Intelligence (2018)
Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training for domain generalization. In: IEEE International Conference on Computer Vision (2019)
Li, H., Jialin Pan, S., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5400–5409 (2018)
Li, Y., et al.: Deep domain generalization via conditional invariant adversarial networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 647–663. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_38
Li, Y., Yang, Y., Zhou, W., Hospedales, T.M.: Feature-critic networks for heterogeneous domain generalization. In: Proceedings of International Conference on Machine Learning (2019)
Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: Proceedings of International Conference on Machine Learning, pp. 10–18 (2013)
Munkhdalai, T., Yu, H.: Meta networks. In: Proceedings of International Conference on Machine Learning (2017)
Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)
Peng, X.B., Kanazawa, A., Toyer, S., Abbeel, P., Levine, S.: Variational discriminator bottleneck: Improving imitation learning, inverse RL, and GANs by constraining information flow. arXiv preprint arXiv:1810.00821 (2018)
Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: International Conference on Learning Representations (2017)
Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082 (2014)
Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3), 157–173 (2008)
Satorras, V.G., Estrach, J.B.: Few-shot learning with graph neural networks. In: International Conference on Learning Representations (2018)
Saxe, A.M., et al.: On the information bottleneck theory of deep learning. In: International Conference on Learning Representations (2018)
Schmidhuber, J.: Learning to control fast-weight memories: an alternative to dynamic recurrent networks. Neural Comput. 4(1), 131–139 (1992)
Schmidhuber, J., Zhao, J., Wiering, M.: Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement. Mach. Learn. 28(1), 105–130 (1997)
Shankar, S., Piratla, V., Chakrabarti, S., Chaudhuri, S., Jyothi, P., Sarawagi, S.: Generalizing across domains via cross-gradient training. arXiv preprint arXiv:1804.10745 (2018)
Shwartz-Ziv, R., Tishby, N.: Opening the black box of deep neural networks via information. arXiv preprint arXiv:1703.00810 (2017)
Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)
Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)
Thrun, S., Pratt, L.: Learning to Learn. Springer, New York (2012). https://doi.org/10.1007/978-1-4615-5529-2
Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv preprint physics/0004057 (2000)
Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle. In: 2015 IEEE Information Theory Workshop (ITW) (April 2015). https://doi.org/10.1109/itw.2015.7133169
Torralba, A., Efros, A.A., et al.: Unbiased look at dataset bias. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)
Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)
Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3637–3645 (2016)
Xie, Q., Dai, Z., Du, Y., Hovy, E., Neubig, G.: Controllable invariance through adversarial feature learning. In: Advances in Neural Information Processing Systems, pp. 585–596 (2017)
Zhen, X., et al.: Learning to learn kernels with variational random features. In: International Conference on Machine Learning (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Du, Y. et al. (2020). Learning to Learn with Variational Information Bottleneck for Domain Generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12355. Springer, Cham. https://doi.org/10.1007/978-3-030-58607-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-58607-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58606-5
Online ISBN: 978-3-030-58607-2
eBook Packages: Computer ScienceComputer Science (R0)