Skip to main content

Structured Landmark Detection via Topology-Adapting Deep Graph Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12354))

Included in the following conference series:

Abstract

Image landmark detection aims to automatically identify the locations of predefined fiducial points. Despite recent success in this field, higher-ordered structural modeling to capture implicit or explicit relationships among anatomical landmarks has not been adequately exploited. In this work, we present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical (e.g., hand, pelvis) landmark detection. The proposed method constructs graph signals leveraging both local image features and global shape features. The adaptive graph topology naturally explores and lands on task-specific structures which are learned end-to-end with two Graph Convolutional Networks (GCNs). Extensive experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis). Quantitative results comparing with the previous state-of-the-art approaches across all studied datasets indicating the superior performance in both robustness and accuracy. Qualitative visualizations of the learned graph topologies demonstrate a physically plausible connectivity laying behind the landmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alp Guler, R., Trigeorgis, G., Antonakos, E., Snape, P., Zafeiriou, S., Kokkinos, I.: Densereg: Fully convolutional dense shape regression in-the-wild. In: CVPR. pp. 6799–6808 (2017)

    Google Scholar 

  2. Arik, S.Ö., Ibragimov, B., Xing, L.: Fully automated quantitative cephalometry using convolutional neural networks. J. Med. Imag. 4(1), 014501 (2017)

    Article  Google Scholar 

  3. Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.: Robust discriminative response map fitting with constrained local models. In: CVPR. pp. 3444–3451 (2013)

    Google Scholar 

  4. Bulat, A., Tzimiropoulos, G.: Binarized convolutional landmark localizers for human pose estimation and face alignment with limited resources. In: ICCV. pp. 3706–3714 (2017)

    Google Scholar 

  5. Bulat, A., Tzimiropoulos, G.: Super-fan: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with gans. In: CVPR. pp. 109–117 (2018)

    Google Scholar 

  6. Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face landmark estimation under occlusion. In: CVPR. pp. 1513–1520 (2013)

    Google Scholar 

  7. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. IJCV 107(2), 177–190 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chen, H., et al.: Anatomy-aware siamese network: Exploiting semantic asymmetry for accurate pelvic fracture detection in x-ray images (2020)

    Google Scholar 

  9. Chen, R., Ma, Y., Chen, N., Lee, D., Wang, W.: Cephalometric landmark detection by attentive feature pyramid fusion and regression-voting. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 873–881. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_97

    Chapter  Google Scholar 

  10. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. TPAMI 6, 681–685 (2001)

    Article  Google Scholar 

  11. Cootes, T.F., Taylor, C.J.: Active shape models-‘smart snakes’. In: BMVC, pp. 266–275. Springer (1992)

    Google Scholar 

  12. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  13. Cristinacce, D., Cootes, T.F.: Feature detection and tracking with constrained local models. In: BMVC. vol. 1, p. 3. Citeseer (2006)

    Google Scholar 

  14. Deng, J., Liu, Q., Yang, J., Tao, D.: M3 csr: Multi-view, multi-scale and multi-component cascade shape regression. Image Vision Comput. 47, 19–26 (2016)

    Article  Google Scholar 

  15. Deng, J., Trigeorgis, G., Zhou, Y., Zafeiriou, S.: Joint multi-view face alignment in the wild. TIP 28(7), 3636–3648 (2019)

    MathSciNet  MATH  Google Scholar 

  16. DeTone, D., Malisiewicz, T., Rabinovich, A.: Deep image homography estimation. arXiv preprint arXiv:1606.03798 (2016)

  17. Dong, X., Yan, Y., Ouyang, W., Yang, Y.: Style aggregated network for facial landmark detection. In: CVPR. pp. 379–388 (2018)

    Google Scholar 

  18. Dong, X., Yu, S.I., Weng, X., Wei, S.E., Yang, Y., Sheikh, Y.: Supervision-by-registration: An unsupervised approach to improve the precision of facial landmark detectors. In: CVPR. pp. 360–368 (2018)

    Google Scholar 

  19. Fan, H., Zhou, E.: Approaching human level facial landmark localization by deep learning. Image Vision Comput. 47, 27–35 (2016)

    Article  Google Scholar 

  20. Feng, Z.H., Kittler, J., Awais, M., Huber, P., Wu, X.J.: Wing loss for robust facial landmark localisation with convolutional neural networks. In: CVPR. pp. 2235–2245 (2018)

    Google Scholar 

  21. Ghiasi, G., Fowlkes, C.C.: Occlusion coherence: Detecting and localizing occluded faces. arXiv preprint arXiv:1506.08347 (2015)

  22. Han, D., Gao, Y., Wu, G., Yap, P.T., Shen, D.: Robust anatomical landmark detection with application to mr brain image registration. Comput. Med. Imag. Graph. 46, 277–290 (2015)

    Article  Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR. pp. 770–778 (2016)

    Google Scholar 

  24. Honari, S., Molchanov, P., Tyree, S., Vincent, P., Pal, C., Kautz, J.: Improving landmark localization with semi-supervised learning. In: CVPR. pp. 1546–1555 (2018)

    Google Scholar 

  25. Honari, S., Yosinski, J., Vincent, P., Pal, C.: Recombinator networks: Learning coarse-to-fine feature aggregation. In: CVPR. pp. 5743–5752 (2016)

    Google Scholar 

  26. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: NeurIPS. pp. 2017–2025 (2015)

    Google Scholar 

  27. Kumar, A., et al.: Luvli face alignment: Estimating landmarks’ location, uncertainty, and visibility likelihood. In: CVPR. pp. 8236–8246 (2020)

    Google Scholar 

  28. Kumar, A., Chellappa, R.: Disentangling 3d pose in a dendritic cnn for unconstrained 2d face alignment. In: CVPR. pp. 430–439 (2018)

    Google Scholar 

  29. Li, G., Müller, M., Thabet, A., Ghanem, B.: Can gcns go as deep as cnns? In: CVPR (2019)

    Google Scholar 

  30. Lindner, C., Bromiley, P.A., Ionita, M.C., Cootes, T.F.: Robust and accurate shape model matching using random forest regression-voting. TPAMI 37(9), 1862–1874 (2014)

    Article  Google Scholar 

  31. Ling, H., Gao, J., Kar, A., Chen, W., Fidler, S.: Fast interactive object annotation with curve-gcn. In: CVPR. pp. 5257–5266 (2019)

    Google Scholar 

  32. Liu, X.: Generic face alignment using boosted appearance model. In: CVPR. pp. 1–8. IEEE (2007)

    Google Scholar 

  33. Liu, Z., Yan, S., Luo, P., Wang, X., Tang, X.: Fashion landmark detection in the wild. In: ECCV. pp. 229–245. Springer (2016)

    Google Scholar 

  34. Lu, Y., et al.: Learning to segment anatomical structures accurately from one exemplar. arXiv preprint arXiv:2007.03052 (2020)

  35. Lv, J., Shao, X., Xing, J., Cheng, C., Zhou, X.: A deep regression architecture with two-stage re-initialization for high performance facial landmark detection. In: CVPR. pp. 3317–3326 (2017)

    Google Scholar 

  36. Milborrow, S., Nicolls, F.: Locating facial features with an extended active shape model. In: ECCV. pp. 504–513. Springer (2008)

    Google Scholar 

  37. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: ECCV. pp. 483–499. Springer (2016)

    Google Scholar 

  38. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using cnns. In: MICCAI. pp. 230–238. Springer (2016)

    Google Scholar 

  39. Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. MIA 54, 207–219 (2019). https://doi.org/10.1016/j.media.2019.03.007

    Article  Google Scholar 

  40. Qi, M., Li, W., Yang, Z., Wang, Y., Luo, J.: Attentive relational networks for mapping images to scene graphs. In: CVPR. pp. 3957–3966 (2019)

    Google Scholar 

  41. Qian, S., Sun, K., Wu, W., Qian, C., Jia, J.: Aggregation via separation: Boosting facial landmark detector with semi-supervised style translation. In: ICCV. pp. 10153–10163 (2019)

    Google Scholar 

  42. Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 fps via regressing local binary features. In: CVPR. pp. 1685–1692 (2014)

    Google Scholar 

  43. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: The first facial landmark localization challenge. In: CVPRW. pp. 397–403 (2013)

    Google Scholar 

  44. Saragih, J.M., Lucey, S., Cohn, J.F.: Face alignment through subspace constrained mean-shifts. In: ICCV. pp. 1034–1041. IEEE (2009)

    Google Scholar 

  45. Sauer, P., Cootes, T.F., Taylor, C.J.: Accurate regression procedures for active appearance models. In: BMVC. pp. 1–11 (2011)

    Google Scholar 

  46. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  47. Su, J., Wang, Z., Liao, C., Ling, H.: Efficient and accurate face alignment by global regression and cascaded local refinement. In: CVPRW (2019)

    Google Scholar 

  48. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR. pp. 5693–5703 (2019)

    Google Scholar 

  49. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: CVPR. pp. 3476–3483 (2013)

    Google Scholar 

  50. Tang, Z., Peng, X., Geng, S., Wu, L., Zhang, S., Metaxas, D.: Quantized densely connected u-nets for efficient landmark localization. In: ECCV. pp. 339–354 (2018)

    Google Scholar 

  51. Toshev, A., Szegedy, C.: Deeppose: Human pose estimation via deep neural networks. In: CVPR. pp. 1653–1660 (2014)

    Google Scholar 

  52. Trigeorgis, G., Snape, P., Nicolaou, M.A., Antonakos, E., Zafeiriou, S.: Mnemonic descent method: A recurrent process applied for end-to-end face alignment. In: CVPR. pp. 4177–4187 (2016)

    Google Scholar 

  53. Valle, R., Buenaposada, J.M., Valdés, A., Baumela, L.: A deeply-initialized coarse-to-fine ensemble of regression trees for face alignment. In: ECCV. pp. 585–601 (2018)

    Google Scholar 

  54. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  55. Wang, C.W., Huang, C.T., Lee, J.H., Li, C.H., Chang, S.W., Siao, M.J., Lai, T.M., Ibragimov, B., Vrtovec, T., Ronneberger, O., et al.: A benchmark for comparison of dental radiography analysis algorithms. MIA 31, 63–76 (2016)

    Google Scholar 

  56. Wang, X., Bo, L., Fuxin, L.: Adaptive wing loss for robust face alignment via heatmap regression. In: ICCV. pp. 6971–6981 (2019)

    Google Scholar 

  57. Wang, Y., Lu, L., Cheng, C.T., Jin, D., Harrison, A.P., Xiao, J., Liao, C.H., Miao, S.: Weakly supervised universal fracture detection in pelvic x-rays. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.T., Khan, A. (eds.) MICCAI, pp. 459–467. Springer International Publishing, Cham (2019)

    Google Scholar 

  58. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: CVPR. pp. 4724–4732 (2016)

    Google Scholar 

  59. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural networks. AAAI. 33, 346–353 (2019)

    Article  Google Scholar 

  60. Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., Zhou, Q.: Look at boundary: A boundary-aware face alignment algorithm. In: CVPR. pp. 2129–2138 (2018)

    Google Scholar 

  61. Wu, W., Yang, S.: Leveraging intra and inter-dataset variations for robust face alignment. In: CVPRW. pp. 150–159 (2017)

    Google Scholar 

  62. Wu, Y., Ji, Q.: Facial landmark detection: a literature survey. IJCV 127(2), 115–142 (2019)

    Article  Google Scholar 

  63. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment. In: CVPR. pp. 532–539 (2013)

    Google Scholar 

  64. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  65. Yu, W., Liang, X., Gong, K., Jiang, C., Xiao, N., Lin, L.: Layout-graph reasoning for fashion landmark detection. In: CVPR. pp. 2937–2945 (2019)

    Google Scholar 

  66. Yu, X., Huang, J., Zhang, S., Metaxas, D.N.: Face landmark fitting via optimized part mixtures and cascaded deformable model. TPAMI 38(11), 2212–2226 (2015)

    Article  Google Scholar 

  67. Yu, X., Zhou, F., Chandraker, M.: Deep deformation network for object landmark localization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 52–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_4

    Chapter  Google Scholar 

  68. Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_1

    Chapter  Google Scholar 

  69. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning deep representation for face alignment with auxiliary attributes. TPAMI 38(5), 918–930 (2015)

    Article  Google Scholar 

  70. Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N.: Semantic graph convolutional networks for 3d human pose regression. In: CVPR. pp. 3425–3435 (2019)

    Google Scholar 

  71. Zhou, F., Brandt, J., Lin, Z.: Exemplar-based graph matching for robust facial landmark localization. In: ICCV. pp. 1025–1032 (2013)

    Google Scholar 

  72. Zhu, M., Shi, D., Zheng, M., Sadiq, M.: Robust facial landmark detection via occlusion-adaptive deep networks. In: CVPR. pp. 3486–3496 (2019)

    Google Scholar 

  73. Zhu, S., Li, C., Change Loy, C., Tang, X.: Face alignment by coarse-to-fine shape searching. In: CVPR. pp. 4998–5006 (2015)

    Google Scholar 

  74. Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: A 3d solution. In: CVPR. pp. 146–155 (2016)

    Google Scholar 

  75. Zhu, Z., Luo, P., Wang, X., Tang, X.: Deep learning identity-preserving face space. In: ICCV. pp. 113–120 (2013)

    Google Scholar 

  76. Zou, X., Zhong, S., Yan, L., Zhao, X., Zhou, J., Wu, Y.: Learning robust facial landmark detection via hierarchical structured ensemble. In: ICCV (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by NSF through award IIS-1722847, NIH through the Morris K. Udall Center of Excellence in Parkinson’s Disease Research. The main work was done when Weijian Li was a research intern at PAII Inc.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 169 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W. et al. (2020). Structured Landmark Detection via Topology-Adapting Deep Graph Learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58545-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58544-0

  • Online ISBN: 978-3-030-58545-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics