Abstract
As the basic building block of Convolutional Neural Networks (CNNs), the convolutional layer is designed to extract local patterns and lacks the ability to model global context in its nature. Many efforts have been recently devoted to complementing CNNs with the global modeling ability, especially by a family of works on global feature interaction. In these works, the global context information is incorporated into local features before they are fed into convolutional layers. However, research on neuroscience reveals that the neurons’ ability of modifying their functions dynamically according to context is essential for the perceptual tasks, which has been overlooked in most of CNNs. Motivated by this, we propose one novel Context-Gated Convolution (CGC) to explicitly modify the weights of convolutional layers adaptively under the guidance of global context. As such, being aware of the global context, the modulated convolution kernel of our proposed CGC can better extract representative local patterns and compose discriminative features. Moreover, our proposed CGC is lightweight and applicable with modern CNN architectures, and consistently improves the performance of CNNs according to extensive experiments on image classification, action recognition, and machine translation. Our code of this paper is available at https://github.com/XudongLinthu/context-gated-convolution.
X. Lin—This work was done when Xudong Lin interned at Tencent AI Lab.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
Barbu, A., et al.: ObjectNet: a large-scale bias-controlled dataset for pushing the limits of object recognition models. In: Advances in Neural Information Processing Systems, pp. 9448–9458 (2019)
Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention augmented convolutional networks. arXiv preprint arXiv:1904.09925 (2019)
Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: Non-local networks meet squeeze-excitation networks and beyond. arXiv preprint arXiv:1904.11492 (2019)
Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: CVPR (2017)
Cettolo, M., Niehues, J., Stüker, S., Bentivogli, L., Federico, M.: Report on the 11th IWSLT evaluation campaign, IWSLT 2014 (2015)
Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847. IEEE (2018)
Chen, Y., Rohrbach, M., Yan, Z., Shuicheng, Y., Feng, J., Kalantidis, Y.: Graph-based global reasoning networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 433–442 (2019)
Cheng, C., et al.: Dual skipping networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4071–4079 (2018)
Child, R., Gray, S., Radford, A., Sutskever, I.: Generating long sequences with sparse transformers. arXiv preprint arXiv:1904.10509 (2019)
Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)
Deng, Y., Kim, Y., Chiu, J., Guo, D., Rush, A.: Latent alignment and variational attention. In: Advances in Neural Information Processing Systems, pp. 9712–9724 (2018)
Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1243–1252. JMLR.org (2017)
Gilbert, C.D., Li, W.: Top-down influences on visual processing. Nat. Rev. Neurosci. 14(5), 350 (2013)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010, vol. 9, pp. 249–256. PMLR. http://proceedings.mlr.press/v9/glorot10a.html
Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: The IEEE International Conference on Computer Vision (ICCV) (October 2017)
Ha, D., Dai, A., Le, Q.V.: Hypernetworks. arXiv preprint arXiv:1609.09106 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV) (December 2015). https://doi.org/10.1109/iccv.2015.123
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 558–567 (2019)
Howard, A.G., et al.: MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)
Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: Advances in Neural Information Processing Systems, pp. 667–675 (2016)
Jo, Y., Wug Oh, S., Kang, J., Joo Kim, S.: Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3224–3232 (2018)
Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)
Krizhevsky, A., et al.: Learning multiple layers of features from tiny images. Technical report. Citeseer (2009)
Li, W., Piëch, V., Gilbert, C.D.: Perceptual learning and top-down influences in primary visual cortex. Nat. Neurosci. 7(6), 651–657 (2004)
Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–519 (2019)
Lin, J., Gan, C., Han, S.: Temporal shift module for efficient video understanding. arXiv preprint arXiv:1811.08383 (2018)
Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst denoising with kernel prediction networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2502–2510 (2018)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, ICML 2010, pp. 807–814 (2010)
Ott, M., et al.: fairseq: a fast, extensible toolkit for sequence modeling. In: Proceedings of NAACL-HLT 2019: Demonstrations (2019)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics (2002)
Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: BAM: Bottleneck attention module. arXiv preprint arXiv:1807.06514 (2018)
Parmar, N., et al.: Image transformer. arXiv preprint arXiv:1802.05751 (2018)
Paszke, A., Gross, S., Chintala, S., et al.: Automatic differentiation in PyTorch (2017)
Qiao, S., Wang, H., Liu, C., Shen, W., Yuille, A.: Weight standardization. arXiv preprint arXiv:1903.10520 (2019)
Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5534–5542. IEEE (2017)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization help optimization? In: Advances in Neural Information Processing Systems, pp. 2483–2493 (2018)
Stollenga, M.F., Masci, J., Gomez, F., Schmidhuber, J.: Deep networks with internal selective attention through feedback connections. In: Advances in Neural Information Processing Systems, pp. 3545–3553 (2014)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)
Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. arXiv preprint arXiv:1711.07971 10 (2017)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Wu, F., Fan, A., Baevski, A., Dauphin, Y.N., Auli, M.: Pay less attention with lightweight and dynamic convolutions. arXiv preprint arXiv:1901.10430 (2019)
Yang, Y., Zhong, Z., Shen, T., Lin, Z.: Convolutional neural networks with alternately updated clique. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2413–2422 (2018)
Zamir, A.R., et al.: Feedback networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1308–1317 (2017)
Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, pp. 649–657 (2015)
Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 831–846. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_49
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)
Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets v2: more deformable, better results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9308–9316 (2019)
Zolfaghari, M., Singh, K., Brox, T.: ECO: efficient convolutional network for online video understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 713–730. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_43
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Lin, X., Ma, L., Liu, W., Chang, SF. (2020). Context-Gated Convolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-58523-5_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58522-8
Online ISBN: 978-3-030-58523-5
eBook Packages: Computer ScienceComputer Science (R0)