Skip to main content

Livestock Welfare by Means of an Edge Computing and IoT Platform

  • Conference paper
Ambient Intelligence – Software and Applications (ISAmI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1239))

Included in the following conference series:

Abstract

The drop in the area of land available for agriculture and the growth of the population is creating more food demand and this makes farmers turn to the new technologies to increase or maintain the quantity and quality of agricultural products. Cloud computing has been playing an important role in the last decade. Unlike Cloud computing, Edge Computing handles the data generated by processing them at the network edge which allows for the implementation of services with shorter response times, a higher Quality of Service (QoS), increased security and low costs. In this paper, we present a platform which combines IoT, Edge Computing, Machine Learning and Blockchain techniques based on the Global Edge Computing Architecture to monitor the state of livestock in real-time, as well as ensure the traceability and sustainability of the different processes involved in the production. The platform is tested for its effectiveness comparing a traditional cloud-based architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World agriculture towards 2030/2050: the 2012 revision, June 2012

    Google Scholar 

  2. Fleming, K., Waweru, P., Wambua, M., Ondula, E., Samuel, L.: Toward quantified small-scale farms in Africa. IEEE Internet Comput. 20(3), 63–67 (2016)

    Article  Google Scholar 

  3. Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.-J.: Big data in smart farming-a review. Agric. Syst. 153, 69–80 (2017)

    Article  Google Scholar 

  4. Wolfert, S., Goense, D., Sørensen, C.A.G.: A future internet collaboration platform for safe and healthy food from farm to fork. In: 2014 Annual SRII Global Conference, pp. 266–273. IEEE (2014)

    Google Scholar 

  5. Kethareswaran, V., Sankar Ram, C.: An Indian perspective on the adverse impact of internet of things (IoT). ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 6(4), 35–40 (2017)

    Google Scholar 

  6. Patil, K.A., Kale, N.R.: A model for smart agriculture using IoT. In: 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), pp. 543–545, December 2016

    Google Scholar 

  7. Jayaraman, P., Yavari, A., Georgakopoulos, D., Morshed, A., Zaslavsky, A.: Internet of things platform for smart farming: experiences and lessons learnt. Sensors 16(11), 1884 (2016)

    Article  Google Scholar 

  8. Ai, Y., Peng, M., Zhang, K.: Edge computing technologies for internet of things: a primer. Digit. Commun. Netw. 4(2), 77–86 (2018)

    Article  Google Scholar 

  9. Lin, J., Wei, Y., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4(5), 1125–1142 (2017)

    Article  Google Scholar 

  10. Patil, A.S., Tama, B.A., Park, Y., Rhee, K.-H.: A framework for blockchain based secure smart green house farming. In: Advances in Computer Science and Ubiquitous Computing, pp. 1162–1167. Springer (2017)

    Google Scholar 

  11. Sittón-Candanedo, I., Alonso, R.S., Corchado, J.M., Rodríguez-González, S., Casado-Vara, R.: A review of edge computing reference architectures and a new global edge proposal. Future Gener. Comput. Syst. 99, 278–294 (2019)

    Article  Google Scholar 

  12. Alonso, R.S., Tapia, D.I., Bajo, J., García, Ó., de Paz, J.F., Corchado, J.M.: Implementing a hardware-embedded reactive agents platform based on a service-oriented architecture over heterogeneous wireless sensor networks. Ad Hoc Netw. 11(1), 151–166 (2013)

    Article  Google Scholar 

  13. Sittón, I., Rodríguez, S.: Pattern extraction for the design of predictive models in industry 4.0. In: International Conference on Practical Applications of Agents and Multi-Agent Systems, pp. 258–261. Springer (2017)

    Google Scholar 

  14. Rahmani, A.M., Gia, T.N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., Liljeberg, P.: Exploiting smart e-health gateways at the edge of healthcare internet-of-things: a fog computing approach. Future Gener. Comput. Syst. 78, 641–658 (2018)

    Article  Google Scholar 

  15. Morabito, R., Cozzolino, V., Ding, A.Y., Beijar, N., Ott, J.: Consolidate IoT edge computing with lightweight virtualization. IEEE Netw. 32(1), 102–111 (2018)

    Article  Google Scholar 

  16. Singh, S., Yassine, A.: IoT big data analytics with fog computing for household energy management in smart grids. In: International Conference on Smart Grid and Internet of Things, pp. 13–22. Springer (2018)

    Google Scholar 

  17. Taleb, T., Dutta, S., Ksentini, A., Iqbal, M., Flinck, H.: Mobile edge computing potential in making cities smarter. IEEE Commun. Mag. 55(3), 38–43 (2017)

    Article  Google Scholar 

  18. Agrawal, H., Prieto, J., Ramos, C., Corchado, J.M.: Smart feeding in farming through IoT in silos. In: The International Symposium on Intelligent Systems Technologies and Applications, pp. 355–366. Springer (2016)

    Google Scholar 

  19. Cambra, C., Sendra, S., Lloret, J., Lacuesta, R.: Smart system for bicarbonate control in irrigation for hydroponic precision farming. Sensors 18(5), 1333 (2018)

    Article  Google Scholar 

  20. Chien, Y.-R., Chen, Y.-X.: An RFID-based smart nest box: an experimental study of laying performance and behavior of individual hens. Sensors 18(3), 859 (2018)

    Article  Google Scholar 

  21. Potamitis, I., Rigakis, I., Tatlas, N.-A., Potirakis, S.: In-vivo vibroacoustic surveillance of trees in the context of the IoT. Sensors 19(6), 1366 (2019)

    Article  Google Scholar 

  22. Jia, W., Liang, G., Tian, H., Sun, J., Wan, C.: Electronic nose-based technique for rapid detection and recognition of moldy apples. Sensors 19(7), 1526 (2019)

    Article  Google Scholar 

  23. Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the internet of things architecture, possible applications and key challenges. In: 2012 10th International Conference on Frontiers of Information Technology, pp. 257–260. IEEE (2012)

    Google Scholar 

  24. Ryu, M., Yun, J., Miao, T., Ahn, I.-Y., Choi, S.-C., Kim, J.: Design and implementation of a connected farm for smart farming system. In: 2015 IEEE Sensors, pp. 1–4. IEEE (2015)

    Google Scholar 

  25. Kamilaris, A., Gao, F., Prenafeta-Boldú, F.X., Ali, M.I.: Agri-IoT: a semantic framework for internet of things-enabled smart farming applications. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 442–447. IEEE (2016)

    Google Scholar 

  26. Park, J., Choi, J.-H., Lee, Y.-J., Min, O.: A layered features analysis in smart farm environments. In: Proceedings of the International Conference on Big Data and Internet of Things, BDIOT 2017, pp. 169–173, New York, NY, USA. ACM (2017)

    Google Scholar 

  27. Sittón-Candanedo, I., Alonso, R.S., García, Ó., Gil, A.B., Rodríguez-González, S.: A review on edge computing in smart energy by means of a systematic mapping study. Electronics 9(1), 48 (2020)

    Article  Google Scholar 

  28. Alonso, R.S., Sittón-Candanedo, I., García, Ó., Prieto, J., Rodríguez-González, S.: An intelligent edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Netw. 98, 102047 (2020)

    Article  Google Scholar 

  29. Project FAR-EDGE. FAR-EDGE Project H2020, November 2017

    Google Scholar 

  30. INTEL-SAP: IoT Joint Reference Architecture from Intel and SAP. Technical report, INTEL-SAP, November 2018

    Google Scholar 

  31. Edge Computing Consortium, Alliance of Industrial Internet, and Edge Computing Consortium. Edge Computing Reference Architecture 2.0. Technical report, Edge Computing Consortium, November 2017

    Google Scholar 

  32. Tseng, M., Canaran, T.E., Canaran, L.: Introduction to Edge Computing in IIoT. Technical report, Industrial Internet Consortium (2018)

    Google Scholar 

  33. de la Prieta, F., Gil, A.B., Moreno, M., Muñoz, M.D.: Review of technologies and platforms for smart cities. In: Rodríguez, S., Prieto, J., Faria, P., Kłos, S., Fernández, A., Mazuelas, S., Jiménez-López, M.D., Moreno, M.N., Navarro, E.M. (eds.) Distributed Computing and Artificial Intelligence, Special Sessions, 15th International Conference, Advances in Intelligent Systems and Computing, pp. 193–200. Springer International Publishing (2019)

    Google Scholar 

  34. De Paz, J.F., Tapia, D.I., Alonso, R.S., Pinzón, C.I., Bajo, J., Corchado, J.M.: Mitigation of the ground reflection effect in real-time locating systems based on wireless sensor networks by using artificial neural networks. Knowl. Inf. Syst. 34(1), 193–217 (2013)

    Article  Google Scholar 

  35. Trentin, I.F., Berlemont, S., Barone, D.A.C.: Lightweight M2M protocol: archetyping an IoT device, and deploying an upgrade architecture. In: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 403–408, March 2018

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the European Regional Development Fund (ERDF) through the Interreg Spain-Portugal V-A Program (POCTEP) under grant 0677_DISRUPTIVE_2_E (Intensifying the activity of Digital Innovation Hubs within the PocTep region to boost the development of disruptive and last generation ICTs through cross-border cooperation). Inés Sittón-Candanedo has been supported by IFARHU – SENACYT scholarship program (Government of Panama). Authors would like to give a special thanks to Rancho Guareña Hermanos Olea Losa, S.L. (Castrillo de la Guareña, Zamora, Spain) for their collaboration during the implementation and testing of the platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo S. Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Öztürk, M., Alonso, R.S., García, Ó., Sittón-Candanedo, I., Prieto, J. (2021). Livestock Welfare by Means of an Edge Computing and IoT Platform. In: Novais, P., Vercelli, G., Larriba-Pey, J.L., Herrera, F., Chamoso, P. (eds) Ambient Intelligence – Software and Applications. ISAmI 2020. Advances in Intelligent Systems and Computing, vol 1239. Springer, Cham. https://doi.org/10.1007/978-3-030-58356-9_16

Download citation

Publish with us

Policies and ethics