Skip to main content

Non-interactive Cryptographic Timestamping Based on Verifiable Delay Functions

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12059))

Included in the following conference series:

  • 3036 Accesses

Abstract

We present the first treatment of non-interactive publicly-verifiable timestamping schemes in the Universal Composability framework. Inspired by the timestamping properties of Bitcoin, we use non-parallelizable computational work that relates to elapsed time to avoid previous impossibility results on non-interactive timestamping. We introduce models of verifiable delay functions (VDF) related to a clock and non-interactive timestamping in the UC-framework. These are used to present a secure construction that provides improvements over previous concrete constructions. Namely, timestamps forged by the adversary are now limited to a certain time-window that depends only on the adversary’s ability to compute VDFs more quickly and on the length of corruption. Finally, we discuss how our construction can be added to non-PoW blockchain protocols to prevent costless simulation attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://vdfresearch.org/.

  2. 2.

    https://medium.com/@chia_network/chia-vdf-competition-guide-5382e1f4bd39.

  3. 3.

    That is, \(x_{i+1}=a||\mathsf {H}(x_i)||b\) for some \(a,b\in \{0,1\}^*\).

References

  1. Abadi, A., Ciampi, M., Kiayias, A., Zikas, V.: Timed signatures and zero-knowledge proofs -timestamping in the blockchain era-. Cryptology ePrint Archive, Report 2019/644 (2019). https://eprint.iacr.org/2019/644

  2. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_11

    Chapter  Google Scholar 

  3. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_25

    Chapter  Google Scholar 

  4. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Cryptology ePrint Archive, Report 2018/712 (2018). http://eprint.iacr.org/2018/712

  5. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 2001 Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 136–145. IEEE (2001)

    Google Scholar 

  6. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2019). v.20190826:041954 https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2000/067&version=20190826:041954&file=067.pdf

  7. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 451–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_15

    Chapter  Google Scholar 

  8. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_3

    Chapter  Google Scholar 

  9. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol. 3(2), 99–111 (1991). https://doi.org/10.1007/BF00196791

    Article  MATH  Google Scholar 

  10. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_27

    Chapter  Google Scholar 

  11. Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential work. In: ICTS, pp. 373–388. ACM (2013)

    Google Scholar 

  12. Moran, T., Shaltiel, R., Ta-Shma, A.: Non-interactive timestamping in the bounded storage model. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 460–476. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_28

    Chapter  MATH  Google Scholar 

  13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

    Google Scholar 

  14. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  15. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Landerreche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Landerreche, E., Stevens, M., Schaffner, C. (2020). Non-interactive Cryptographic Timestamping Based on Verifiable Delay Functions. In: Bonneau, J., Heninger, N. (eds) Financial Cryptography and Data Security. FC 2020. Lecture Notes in Computer Science(), vol 12059. Springer, Cham. https://doi.org/10.1007/978-3-030-51280-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51280-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51279-8

  • Online ISBN: 978-3-030-51280-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics