Skip to main content

Secure Computation of the \(k^{\mathrm {th}}\)-Ranked Element in a Star Network

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12059))

Included in the following conference series:

  • 2933 Accesses

Abstract

We consider the problem of securely computing the \(k^{\mathrm {th}}\)-ranked element in a sequence of n private integers distributed among n parties. The \(k^{\mathrm {th}}\)-ranked element (e.g., minimum, maximum, median) is of particular interest in collaborative benchmarking and auctions. Previous secure protocols for the \(k^{\mathrm {th}}\)-ranked element require a communication channel between each pair of parties. A server model naturally fits with the client-server architecture of Internet applications in which clients are connected to the server and not to other clients. It simplifies secure computation by reducing the number of rounds and improves its performance and scalability. In this paper, we propose different approaches for privately computing the \(k^{\mathrm {th}}\)-ranked element in the server model, using either garbled circuits or threshold homomorphic encryption. Our schemes have a constant number of rounds and can compute the \(k^{\mathrm {th}}\)-ranked element within seconds for up to 50 clients in a WAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the kth-ranked element. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 40–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_3

    Chapter  Google Scholar 

  2. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: CCS (CCS 2012), pp. 784–796 (2012)

    Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10. ACM, New York (1988)

    Google Scholar 

  4. Blass, E.-O., Kerschbaum, F.: Strain: a secure auction for blockchains. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 87–110. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99073-6_5

    Chapter  Google Scholar 

  5. Blass, E., Kerschbaum, F.: Secure computation of the \(k^{\text{ th }}\)-ranked integer on blockchains. IACR Cryptology ePrint Arch. 2019, 276 (2019)

    Google Scholar 

  6. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_19

    Chapter  Google Scholar 

  7. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_18

    Chapter  Google Scholar 

  8. Boneh, D., Shoup, V.: A graduate course in applied cryptography (2017). https://crypto.stanford.edu/~dabo/cryptobook/

  9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. ECCC 18, 111 (2011)

    MATH  Google Scholar 

  10. Catrina, O., Kerschbaum, F.: Fostering the uptake of secure multiparty computation in e-commerce. In: PARES 2008 (ARES 2008), pp. 693–700 (2008)

    Google Scholar 

  11. Cheon, J.H., Kim, M., Lauter, K.: Homomorphic computation of edit distance. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 194–212. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9_15

    Chapter  Google Scholar 

  12. Damgård, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 416–430. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1_30

    Chapter  MATH  Google Scholar 

  13. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1

    Chapter  Google Scholar 

  14. Ejgenberg, Y., Farbstein, M., Levy, M., Lindell, Y.: SCAPI: the secure computation application programming interface. IACR Cryptol. ePrint Arch. 2012, 629 (2012)

    Google Scholar 

  15. Feige, U., Killian, J., Naor, M.: A minimal model for secure computation (extended abstract). In: STOC 1994, pp. 554–563 (1994)

    Google Scholar 

  16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC, pp. 218–229. ACM, New York (1987)

    Google Scholar 

  17. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_31

    Chapter  MATH  Google Scholar 

  18. Helib. https://github.com/homenc/HElib (2019)

  19. Hu, Y., Martin, W., Sunar, B.: Enhanced flexibility for homomorphic encryption schemes via CRT. In: ACNS (2012)

    Google Scholar 

  20. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. IACR Cryptology ePrint Arch. 2011, 272 (2011)

    Google Scholar 

  21. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: CCS 2016, pp. 830–842 (2016)

    Google Scholar 

  22. Kerschbaum, F.: Building a privacy-preserving benchmarking enterprise system. Enterp. IS 2(4), 421–441 (2008)

    Google Scholar 

  23. Kerschbaum, F.: Adapting privacy-preserving computation to the service provider model. In: CSE, pp. 34–41 (2009)

    Google Scholar 

  24. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    Article  MathSciNet  Google Scholar 

  25. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10433-6_1

    Chapter  MATH  Google Scholar 

  26. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40

    Chapter  MATH  Google Scholar 

  27. Lin, H., Tzeng, W.: An efficient solution to the millionaires’ problem based on homomorphic encryption. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 456–466. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_31

    Chapter  Google Scholar 

  28. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptology 22(2), 161–188 (2009)

    Article  MathSciNet  Google Scholar 

  29. Multi-protocol spdz (2019). https://github.com/data61/MP-SPDZ

  30. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  31. Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Des. Codes Crypt. 71(1), 57–81 (2014)

    Article  Google Scholar 

  32. Yao, A.C.: Protocols for secure computations. In: SFCS 1982, pp. 160–164. IEEE Computer Society, Washington (1982)

    Google Scholar 

  33. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_8

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their valuable comments, and Andreas Fischer and Jonas Böhler for helpful contribution to some implementations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anselme Tueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tueno, A., Kerschbaum, F., Katzenbeisser, S., Boev, Y., Qureshi, M. (2020). Secure Computation of the \(k^{\mathrm {th}}\)-Ranked Element in a Star Network. In: Bonneau, J., Heninger, N. (eds) Financial Cryptography and Data Security. FC 2020. Lecture Notes in Computer Science(), vol 12059. Springer, Cham. https://doi.org/10.1007/978-3-030-51280-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51280-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51279-8

  • Online ISBN: 978-3-030-51280-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics