Abstract
Monero has emerged as one of the leading cryptocurrencies with privacy by design. However, this comes at the price of reduced expressiveness and interoperability as well as severe scalability issues. First, Monero is restricted to coin exchanges among individual addresses and no further functionality is supported. Second, transactions are authorized by linkable ring signatures, a digital signature scheme used in Monero, hindering thereby the interoperability with virtually all the rest of cryptocurrencies that support different digital signature schemes. Third, Monero transactions require an on-chain footprint larger than other cryptocurrencies, leading to a rapid ledger growth and thus scalability issues.
This work extends Monero expressiveness and interoperability while mitigating its scalability issues. We present Dual Linkable Spontaneous Anonymous Group Signature for Ad Hoc Groups (DLSAG), a linkable ring signature scheme that enables for the first time non-interactive refund transactions natively in Monero: DLSAG can seamlessly be implemented along with other cryptographic tools already available in Monero such as commitments and range proofs. We formally prove that DLSAG provides the same security and privacy notions introduced in the original linkable ring signature [29] namely, unforgeability, signer ambiguity, and linkability. We have evaluated DLSAG and showed that it imposes even slightly lower computation and similar communication overhead than the current digital signature scheme in Monero, demonstrating its practicality. We further show how to leverage DLSAG to enable off-chain scalability solutions in Monero such as payment channels and payment-channel networks as well as atomic swaps and interoperable payments with virtually all cryptocurrencies available today. DLSAG is currently being discussed within the Monero community as an option for adoption as a key building block for expressiveness, interoperability, and scalability.
A. Blue—Independent Researcher.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Monero in fact uses a matrix version of LSAG (MLSAG) [37] to prove balance without revealing spent ring members. We describe here the simplest LSAG version but our constructions can be trivially extended to support matrix version.
- 2.
The One-More Discrete Logarithm hardness assumption is defined in [13].
References
Cryptonote currencies. https://cryptonote.org/coins
Libsodium documentation. https://libsodium.gitbook.io/doc/
Monero monthly blockchain growth. https://moneroblocks.info/stats/blockchain-growth
Payment channels. https://en.bitcoin.it/wiki/Payment_channels
Raiden network. https://raiden.network/
Research meeting, 17:00 UTC, 18 March 2019. https://github.com/monero-project/meta/issues/319
Understanding the structure of Monero’s LMDB and how explore its contents using mdb\_stat. https://monero.stackexchange.com/questions/10919/understanding-the-structure-of-moneros-lmdb-and-how-explore-its-contents-using
What is Fungibility? https://www.investopedia.com/terms/f/fungibility.asp
DLSAG prototype numbers (2019). https://github.com/levduc/DLSAG-prototype-number
Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user privacy in Bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_4
Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better—how to make Bitcoin a better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_29
Bellare, Namprempre, Pointcheval, Semanko: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. J. Cryptology 16(3), 185–215 (2003). https://doi.org/10.1007/s00145-002-0120-1
Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_4
Bowe, S., Hopwood, D.: Hashed time-locked contract transactions (2017). https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: S&P, pp. 315–334 (2018)
Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives (2017). https://eprint.iacr.org/2017/279
Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_8
Decker, C., Wattenhofer, R.: A fast and scalable payment network with Bitcoin duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21741-3_1
Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor. 22(6), 644–654 (2006)
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. JACM 38(3), 691–729 (1991)
Goodell, B., Noether, S.: Thring signatures and their applications to spender-ambiguous digital currencies. Cryptology ePrint Archive, Report 2018/774, 2018. https://eprint.iacr.org/2018/774
Green, M., Miers, I.: Bolt: Anonymous payment channels for decentralized currencies. In: CCS, pp. 473–489 (2017)
Khalil, R., Gervais, A.: Revive: rebalancing off-blockchain payment networks. In: CCS, pp. 439–453 (2017)
Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in Bitcoin using P2P network traffic. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 469–485. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_30
Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of Monero’s blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 153–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_9
Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security from the DDH assumption. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099, pp. 288–308. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1_15
Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for Ad Hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_28
Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency and privacy with payment-channel networks. In: CCS, pp. 455–471 (2017)
Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anonymous multi-hop locks for blockchain scalability and interoperability. In: NDSS, January 2019
Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple schnorr multi-signatures with applications to Bitcoin. Cryptology ePrint Archive, Report 2018/068, 2018. https://eprint.iacr.org/2018/068
Meiklejohn, S., et al.: A fistful of Bitcoins: characterizing payments among men with no names (IMC 2013). In: IMC, pp. 127–140 (2013)
Moreno-Sanchez, P., Randomrun, Le, D.V., Noether, S., Goodell, B., Kate, A.: DLSAG: non-interactive refund transactions for interoperable payment channels in monero. Cryptology ePrint Archive, Report 2019/595, 2019. https://eprint.iacr.org/2019/595
Möser, M., et al.: An empirical analysis of traceability in the Monero blockchain. PETS 2018(3), 143–163 (2018)
Noether, S., Goodel, B.: Dual linkable ring signatures. https://ww.getmonero.org/resources/research-lab/pubs/MRL-0008.pdf
Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1, 1–18 (2016)
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Poelstra, A.: Lightning in scriptless scripts (2017). https://lists.launchpad.net/mimblewimble/msg00086.html
Poelstra, A.: Scriptless scripts (2017). https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
Poon, J., Dryja, T.: The Bitcoin Lightning Network. Whitepaper (2016). http://lightning.network/
Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: Altshuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and Privacy in Social Networks. Springer, New York (2013)
Rusty: Lightning Networks Part II: Hashed Timelock Contracts (HTLCs) (2015). https://rusty.ozlabs.org/?p=462
van Saberhagen, N.: Cryptonote v 2.0. Whitepaper (2013). https://cryptonote.org/whitepaper.pdf
Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725
Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the Bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 457–468. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_29
Acknowledgments
This work has been partially supported by the Austrian Science Fund (FWF) through the Lisa Meitner program and by the National Science Foundation under grant CNS-1846316.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 International Financial Cryptography Association
About this paper
Cite this paper
Moreno-Sanchez, P., Blue, A., Le, D.V., Noether, S., Goodell, B., Kate, A. (2020). DLSAG: Non-interactive Refund Transactions for Interoperable Payment Channels in Monero. In: Bonneau, J., Heninger, N. (eds) Financial Cryptography and Data Security. FC 2020. Lecture Notes in Computer Science(), vol 12059. Springer, Cham. https://doi.org/10.1007/978-3-030-51280-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-51280-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51279-8
Online ISBN: 978-3-030-51280-4
eBook Packages: Computer ScienceComputer Science (R0)