Skip to main content

Prediction of New Itinerary Markets for Airlines via Network Embedding

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2019)

Abstract

Network planning is one of the most significant problems that airlines solve every day. Currently, airlines utilise traveller decision choice modelling, which has certain drawbacks. It analyses each market independently, which does not consider the entire Airline network information with its dynamic structure formation based on competition factors.

In the paper, we show that Airline network structure provides an accurate prediction for the current network and for future lines. We compare several approaches for Airline network link prediction via structural network embeddings, which are interpreted as new itinerary markets estimation.

The work of I. Makarov was supported by the Russian Science Foundation under grant 17-11-01294 and performed at National Research University Higher School of Economics, Russia. The work of D. Kiselev was prepared within the framework of the HSE University Basic Research Program and funded by the Russian Academic Excellence Project ‘5-100’. Sections 1–3 were prepared by I. Makarov. Sections 4, 6 were prepared by D. Kiselev. Section 5 was contributed jointly and equally by both authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the fourth ACM International Conference on Web Search and Data Mining, pp. 635–644. ACM (2011)

    Google Scholar 

  2. Barnhart, C., Smith, B.: Quantitative Problem Solving Methods in the Airline Industry. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-1608-1

    Book  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  4. Busquets, J.G., Alonso, E., Evans, A.D.: Air itinerary shares estimation using multinomial logit models. Transp. Plann. Technol. 41(1), 3–16 (2018). https://doi.org/10.1080/03081060.2018.1402742

    Article  Google Scholar 

  5. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: problems, techniques and applications. IEEE Trans. Knowl. Data Eng. 30, 1616–1637 (2018)

    Article  Google Scholar 

  6. Chen, H., Perozzi, B., Al-Rfou, R., Skiena, S.: A tutorial on network embeddings. arXiv preprint arXiv:1808.02590 (2018)

  7. Chen, Z., Zhang, W.: A marginalized denoising method for link prediction in relational data, pp. 298–306. SIAM Publications Online (2014). https://doi.org/10.1137/1.9781611973440.34. https://epubs.siam.org/doi/abs/10.1137/1.9781611973440.34

  8. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans. Knowl. Data Eng. 31, 833–852 (2018)

    Article  Google Scholar 

  9. Garrow, L.A.: Discrete Choice Modelling and Air Travel Demand: Theory and Applications. Routledge, London (2016)

    Book  Google Scholar 

  10. Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: capturing network dynamics using dynamic graph representation learning (2018)

    Google Scholar 

  11. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  12. Goyal, P., Hosseinmardi, H., Ferrara, E., Galstyan, A.: Capturing edge attributes via network embedding. arXiv preprint arXiv:1805.03280 (2018)

  13. Goyal, P., Kamra, N., He, X., Liu, Y.: DynGEM: deep embedding method for dynamic graphs. arXiv preprint arXiv:1805.11273 (2018)

  14. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 855–864. ACM, New York (2016). https://doi.org/10.1145/2939672.2939754. http://doi.acm.org/10.1145/2939672.2939754

  15. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)

    Google Scholar 

  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  17. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  18. Kuo, T.T., Yan, R., Huang, Y.Y., Kung, P.H., Lin, S.D.: Unsupervised link prediction using aggregative statistics on heterogeneous social networks. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 775–783. ACM, New York (2013). https://doi.org/10.1145/2487575.2487614. http://doi.acm.org/10.1145/2487575.2487614

  19. Lhéritier, A., Bocamazo, M., Delahaye, T., Acuna-Agost, R.: Airline itinerary choice modeling using machine learning. J. Choice Modell. 31, 198–209 (2018)

    Article  Google Scholar 

  20. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Assoc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  21. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  22. Mottini, A., Acuna-Agost, R.: Deep choice model using pointer networks for airline itinerary prediction. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1575–1583. ACM (2017)

    Google Scholar 

  23. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1105–1114. ACM (2016)

    Google Scholar 

  24. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 701–710. ACM, New York (2014). https://doi.org/10.1145/2623330.2623732. http://doi.acm.org/10.1145/2623330.2623732

  25. Perozzi, B., Kulkarni, V., Chen, H., Skiena, S.: Don’t walk, skip!: online learning of multi-scale network embeddings. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 258–265. ACM (2017)

    Google Scholar 

  26. Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 385–394. ACM (2017)

    Google Scholar 

  27. Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.: GEMSEC: graph embedding with self clustering. arXiv preprint arXiv:1802.03997 (2018)

  28. Rozemberczki, B., Sarkar, R.: Fast sequence-based embedding with diffusion graphs. In: Cornelius, S., Coronges, K., Gonçalves, B., Sinatra, R., Vespignani, A. (eds.) CompleNet 2018. SPC, pp. 99–107. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73198-8_9

    Chapter  Google Scholar 

  29. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  30. Tran, P.V.: Learning to make predictions on graphs with autoencoders. In: 5th IEEE International Conference on Data Science and Advanced Analytics (2018)

    Google Scholar 

  31. Bureau of Transportation Statistics: Airline origin and destination survey (DB1B) (2018)

    Google Scholar 

  32. Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: VERSE: versatile graph embeddings from similarity measures. In: Proceedings of the 2018 World Wide Web Conference, WWW 2018, pp. 539–548. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva (2018). https://doi.org/10.1145/3178876.3186120

  33. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  34. Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015). https://doi.org/10.1007/s11432-014-5237-y

    Article  Google Scholar 

  35. Xiang, B., Liu, Z., Zhou, J., Li, X.: Feature propagation on graph: a new perspective to graph representation learning. CoRR abs/1804.06111 (2018). http://arxiv.org/abs/1804.06111

  36. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey. IEEE Trans. Big Data (2018). https://ieeexplore.ieee.org/abstract/document/8395024

  37. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. arXiv preprint arXiv:1812.04202 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Makarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiselev, D., Makarov, I. (2020). Prediction of New Itinerary Markets for Airlines via Network Embedding. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2019. Communications in Computer and Information Science, vol 1086. Springer, Cham. https://doi.org/10.1007/978-3-030-39575-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39575-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39574-2

  • Online ISBN: 978-3-030-39575-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics