Abstract
Network planning is one of the most significant problems that airlines solve every day. Currently, airlines utilise traveller decision choice modelling, which has certain drawbacks. It analyses each market independently, which does not consider the entire Airline network information with its dynamic structure formation based on competition factors.
In the paper, we show that Airline network structure provides an accurate prediction for the current network and for future lines. We compare several approaches for Airline network link prediction via structural network embeddings, which are interpreted as new itinerary markets estimation.
The work of I. Makarov was supported by the Russian Science Foundation under grant 17-11-01294 and performed at National Research University Higher School of Economics, Russia. The work of D. Kiselev was prepared within the framework of the HSE University Basic Research Program and funded by the Russian Academic Excellence Project ‘5-100’. Sections 1–3 were prepared by I. Makarov. Sections 4, 6 were prepared by D. Kiselev. Section 5 was contributed jointly and equally by both authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the fourth ACM International Conference on Web Search and Data Mining, pp. 635–644. ACM (2011)
Barnhart, C., Smith, B.: Quantitative Problem Solving Methods in the Airline Industry. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-1608-1
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)
Busquets, J.G., Alonso, E., Evans, A.D.: Air itinerary shares estimation using multinomial logit models. Transp. Plann. Technol. 41(1), 3–16 (2018). https://doi.org/10.1080/03081060.2018.1402742
Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: problems, techniques and applications. IEEE Trans. Knowl. Data Eng. 30, 1616–1637 (2018)
Chen, H., Perozzi, B., Al-Rfou, R., Skiena, S.: A tutorial on network embeddings. arXiv preprint arXiv:1808.02590 (2018)
Chen, Z., Zhang, W.: A marginalized denoising method for link prediction in relational data, pp. 298–306. SIAM Publications Online (2014). https://doi.org/10.1137/1.9781611973440.34. https://epubs.siam.org/doi/abs/10.1137/1.9781611973440.34
Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans. Knowl. Data Eng. 31, 833–852 (2018)
Garrow, L.A.: Discrete Choice Modelling and Air Travel Demand: Theory and Applications. Routledge, London (2016)
Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: capturing network dynamics using dynamic graph representation learning (2018)
Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)
Goyal, P., Hosseinmardi, H., Ferrara, E., Galstyan, A.: Capturing edge attributes via network embedding. arXiv preprint arXiv:1805.03280 (2018)
Goyal, P., Kamra, N., He, X., Liu, Y.: DynGEM: deep embedding method for dynamic graphs. arXiv preprint arXiv:1805.11273 (2018)
Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 855–864. ACM, New York (2016). https://doi.org/10.1145/2939672.2939754. http://doi.acm.org/10.1145/2939672.2939754
Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)
Kuo, T.T., Yan, R., Huang, Y.Y., Kung, P.H., Lin, S.D.: Unsupervised link prediction using aggregative statistics on heterogeneous social networks. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 775–783. ACM, New York (2013). https://doi.org/10.1145/2487575.2487614. http://doi.acm.org/10.1145/2487575.2487614
Lhéritier, A., Bocamazo, M., Delahaye, T., Acuna-Agost, R.: Airline itinerary choice modeling using machine learning. J. Choice Modell. 31, 198–209 (2018)
Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Assoc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Mottini, A., Acuna-Agost, R.: Deep choice model using pointer networks for airline itinerary prediction. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1575–1583. ACM (2017)
Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1105–1114. ACM (2016)
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 701–710. ACM, New York (2014). https://doi.org/10.1145/2623330.2623732. http://doi.acm.org/10.1145/2623330.2623732
Perozzi, B., Kulkarni, V., Chen, H., Skiena, S.: Don’t walk, skip!: online learning of multi-scale network embeddings. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 258–265. ACM (2017)
Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 385–394. ACM (2017)
Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.: GEMSEC: graph embedding with self clustering. arXiv preprint arXiv:1802.03997 (2018)
Rozemberczki, B., Sarkar, R.: Fast sequence-based embedding with diffusion graphs. In: Cornelius, S., Coronges, K., Gonçalves, B., Sinatra, R., Vespignani, A. (eds.) CompleNet 2018. SPC, pp. 99–107. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73198-8_9
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)
Tran, P.V.: Learning to make predictions on graphs with autoencoders. In: 5th IEEE International Conference on Data Science and Advanced Analytics (2018)
Bureau of Transportation Statistics: Airline origin and destination survey (DB1B) (2018)
Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: VERSE: versatile graph embeddings from similarity measures. In: Proceedings of the 2018 World Wide Web Conference, WWW 2018, pp. 539–548. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva (2018). https://doi.org/10.1145/3178876.3186120
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015). https://doi.org/10.1007/s11432-014-5237-y
Xiang, B., Liu, Z., Zhou, J., Li, X.: Feature propagation on graph: a new perspective to graph representation learning. CoRR abs/1804.06111 (2018). http://arxiv.org/abs/1804.06111
Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey. IEEE Trans. Big Data (2018). https://ieeexplore.ieee.org/abstract/document/8395024
Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. arXiv preprint arXiv:1812.04202 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kiselev, D., Makarov, I. (2020). Prediction of New Itinerary Markets for Airlines via Network Embedding. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2019. Communications in Computer and Information Science, vol 1086. Springer, Cham. https://doi.org/10.1007/978-3-030-39575-9_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-39575-9_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39574-2
Online ISBN: 978-3-030-39575-9
eBook Packages: Computer ScienceComputer Science (R0)