Skip to main content

Building Chinese Legal Hybrid Knowledge Network

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2019)

Abstract

Knowledge graphs play an important role in many applications, such as data integration, natural language understanding and semantic search. Recently, there has been some work on constructing legal knowledge graphs from legal judgments. However, they suffer from some problems. First, existing work follows the Western legal system, thus cannot be applied to other legal systems, such as Asian legal systems; Second, existing work intends to build a precise legal knowledge graph, which is often not effective, especially when constructing the precise relationship between legal terms. To solve these problems, in this paper, we propose a framework for constructing a legal hybrid knowledge network from Chinese encyclopedia and legal judgments. First, we construct a network of legal terms through encyclopedia data. Then, we build a legal knowledge graph through Chinese legal judgments which captures the strict logical connections in the legal judgments. Finally, we build a Chinese legal hybrid knowledge network by combining the network of legal terms and the legal knowledge graph. We also evaluate the algorithms which are used to build the legal hybrid knowledge network on a real-world dataset. Experimental results demonstrate the effectiveness of these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://baike.baidu.com.

  2. 2.

    http://www.baike.com.

  3. 3.

    https://zh.wikipedia.org.

  4. 4.

    https://github.com/yahoo/FEL.

References

  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  2. Benjamins, V.R., Casanovas, P., Breuker, J., Gangemi, A.: Law and the Semantic Web: Legal Ontologies, Methodologies, Legal Information Retrieval, Andapplications, vol. 3369. Springer, Heidelberg (2005). https://doi.org/10.1007/b106624

    Book  Google Scholar 

  3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    MATH  Google Scholar 

  4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)

    Google Scholar 

  5. Do, P.K., Nguyen, H.T., Tran, C.X., Nguyen, M.T., Nguyen, M.L.: Legal question answering using ranking SVM and deep convolutional neural network. arXiv preprint arXiv:1703.05320 (2017)

  6. Filtz, E.: Building and processing a knowledge-graph for legal data. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10250, pp. 184–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58451-5_13

    Chapter  Google Scholar 

  7. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data (2001)

    Google Scholar 

  8. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  9. Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)

    Article  Google Scholar 

  10. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (2004)

    Google Scholar 

  11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  12. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  13. Montiel-Ponsoda, E., Gracia, J., Rodríguez-Doncel, V.: Building the legal knowledge graph for smart compliance services in multilingual Europe. In: CEUR workshop proceedings No. ART-2018-105821 (2018)

    Google Scholar 

  14. Niu, X., Sun, X., Wang, H., Rong, S., Qi, G., Yu, Y.: Zhishi.me - weaving chinese linking open data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7032, pp. 205–220. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25093-4_14

    Chapter  Google Scholar 

  15. Ramos, J., et al.: Using TF-IDF to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning, Piscataway, NJ, vol. 242, pp. 133–142 (2003)

    Google Scholar 

  16. Sánchez A, V.D.: Advanced support vector machines and kernel methods. Neurocomputing 55(1–2), 5–20 (2003)

    Article  Google Scholar 

  17. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706. ACM (2007)

    Google Scholar 

  18. Wang, Z., et al.: XLore: a large-scale English-Chinese bilingual knowledge graph. In: International semantic web conference (Posters & Demos), vol. 1035, pp. 121–124 (2013)

    Google Scholar 

  19. Xu, B., et al.: CN-DBpedia: a never-ending Chinese knowledge extraction system. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol. 10351, pp. 428–438. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60045-1_44

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by National Key R&D Program of China (2018YFC0830200) and National Natural Science Foundation of China Key Project (U1736204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bi, S., Huang, Y., Cheng, X., Wang, M., Qi, G. (2019). Building Chinese Legal Hybrid Knowledge Network. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29551-6_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29550-9

  • Online ISBN: 978-3-030-29551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics