Abstract
Knowledge graphs play an important role in many applications, such as data integration, natural language understanding and semantic search. Recently, there has been some work on constructing legal knowledge graphs from legal judgments. However, they suffer from some problems. First, existing work follows the Western legal system, thus cannot be applied to other legal systems, such as Asian legal systems; Second, existing work intends to build a precise legal knowledge graph, which is often not effective, especially when constructing the precise relationship between legal terms. To solve these problems, in this paper, we propose a framework for constructing a legal hybrid knowledge network from Chinese encyclopedia and legal judgments. First, we construct a network of legal terms through encyclopedia data. Then, we build a legal knowledge graph through Chinese legal judgments which captures the strict logical connections in the legal judgments. Finally, we build a Chinese legal hybrid knowledge network by combining the network of legal terms and the legal knowledge graph. We also evaluate the algorithms which are used to build the legal hybrid knowledge network on a real-world dataset. Experimental results demonstrate the effectiveness of these algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52
Benjamins, V.R., Casanovas, P., Breuker, J., Gangemi, A.: Law and the Semantic Web: Legal Ontologies, Methodologies, Legal Information Retrieval, Andapplications, vol. 3369. Springer, Heidelberg (2005). https://doi.org/10.1007/b106624
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)
Do, P.K., Nguyen, H.T., Tran, C.X., Nguyen, M.T., Nguyen, M.L.: Legal question answering using ranking SVM and deep convolutional neural network. arXiv preprint arXiv:1703.05320 (2017)
Filtz, E.: Building and processing a knowledge-graph for legal data. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10250, pp. 184–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58451-5_13
Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data (2001)
Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)
Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)
Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (2004)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Montiel-Ponsoda, E., Gracia, J., RodrÃguez-Doncel, V.: Building the legal knowledge graph for smart compliance services in multilingual Europe. In: CEUR workshop proceedings No. ART-2018-105821 (2018)
Niu, X., Sun, X., Wang, H., Rong, S., Qi, G., Yu, Y.: Zhishi.me - weaving chinese linking open data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7032, pp. 205–220. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25093-4_14
Ramos, J., et al.: Using TF-IDF to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning, Piscataway, NJ, vol. 242, pp. 133–142 (2003)
Sánchez A, V.D.: Advanced support vector machines and kernel methods. Neurocomputing 55(1–2), 5–20 (2003)
Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706. ACM (2007)
Wang, Z., et al.: XLore: a large-scale English-Chinese bilingual knowledge graph. In: International semantic web conference (Posters & Demos), vol. 1035, pp. 121–124 (2013)
Xu, B., et al.: CN-DBpedia: a never-ending Chinese knowledge extraction system. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol. 10351, pp. 428–438. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60045-1_44
Acknowledgement
This work was supported by National Key R&D Program of China (2018YFC0830200) and National Natural Science Foundation of China Key Project (U1736204).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bi, S., Huang, Y., Cheng, X., Wang, M., Qi, G. (2019). Building Chinese Legal Hybrid Knowledge Network. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_56
Download citation
DOI: https://doi.org/10.1007/978-3-030-29551-6_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29550-9
Online ISBN: 978-3-030-29551-6
eBook Packages: Computer ScienceComputer Science (R0)