Skip to main content

Exploiting Local Shape Information for Cross-Modal Person Re-identification

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11645))

Included in the following conference series:

  • 2002 Accesses

Abstract

In computer vision, person re-identification (Re-id) is an important problem, aiming to match people across multiple camera views. Most of the existing Re-id systems widely use RGB-based appearance cues, which is not suitable when lighting conditions are very poor. However, for many security reasons, sometimes continued surveillance via camera in low lighting conditions is inevitable. To overcome this problem, we take advantage of the Kinect sensor based depth camera (e.g., Microsoft Kinect), which can be installed in dark places to capture video, while RGB based cameras can be installed in good lighting conditions. Such types of heterogeneous camera networks can be advantageous due to the different sensing modalities available but face challenges to recognize people across depth and RGB cameras. In this paper, we propose a body partitioning method and novel HOG based feature extraction technique on both modalities, which extract local shape information from regions within an image. We find that combining the estimated features on both modalities can sometimes help to better reduce visual ambiguities of appearance features caused by lighting conditions and clothes. We also propose an effective metric learning approach to obtain a better re-identification accuracy across RGB and depth. Experimental results on two publicly available RGBD-ID datasets show the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu, A., Zheng, W.S., Lai, J.H.: Robust depth-based person re-identification. IEEE Trans. Image Process. 26(6), 2588–2603 (2017)

    Article  MathSciNet  Google Scholar 

  2. Haque, A., Alahi, A., Fei-Fei, L.: Recurrent attention models for depth-based person identification. In: CVPR (2016)

    Google Scholar 

  3. Wu, A., Zheng, W.S., Yu, H.X., Gong, S., Lai, J.: RGB-infrared cross-modality person re-identification. In: ICCV (2017)

    Google Scholar 

  4. Ye, M., Wang, Z., Lan, X., Yuen, P.C.: Visible thermal person re-identification via dual-constrained top-ranking. In: IJCAI (2018)

    Google Scholar 

  5. Zhuo, J., Zhu, J., Lai, J., Xie, X.: Person re-identification on heterogeneous camera network. In: Yang, J. (ed.) CCCV 2017. CCIS, vol. 773, pp. 280–291. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-7305-2_25

    Chapter  Google Scholar 

  6. Satta, R., Pala, F., Fumera, G., Roli, F.: Real-time appearance-based person re-identification over multiple Kinect cameras. In: VISAPP, no. 2, pp. 407–410 (2013)

    Google Scholar 

  7. Munaro, M., Fossati, A., Basso, A., Menegatti, E., Van Gool, L.: One-shot person re-identification with a consumer depth camera. In: Gong, S., Cristani, M., Yan, S., Loy, C.C. (eds.) Person Re-Identification. ACVPR, pp. 161–181. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6296-4_8

    Chapter  Google Scholar 

  8. Munaro, M., Basso, A., Fossati, A., Van Gool, L., Menegatti, E.: 3D reconstruction of freely moving persons for re-identification with a depth sensor. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4512–4519 (2014)

    Google Scholar 

  9. Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR (2010)

    Google Scholar 

  10. Liu, C., Gong, S., Loy, C.C., Lin, X.: Person re-identification: what features are important? In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 391–401. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33863-2_39

    Chapter  Google Scholar 

  11. Bhuiyan, A., Perina, A., Murino, V.: Person re-identification by discriminatively selecting parts and features. In: Agapito, L., Bronstein, Michael M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8927, pp. 147–161. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16199-0_11

    Chapter  Google Scholar 

  12. Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_21

    Chapter  Google Scholar 

  13. Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: CVPR (2015)

    Google Scholar 

  14. Panda, R., Bhuiyan, A., Murino, V., Roy-Chowdhury, A.K.: Unsupervised adaptive re-identification in open world dynamic camera networks. In: CVPR (2017)

    Google Scholar 

  15. Pala, F., Satta, R., Fumera, G., Roli, F.: Multimodal person re-identification using RGB-D cameras. IEEE Trans. Circ. Syst. Video Technol. 26(4), 788–799 (2016)

    Article  Google Scholar 

  16. Ren, L., Lu, J., Feng, J., Zhou, J.: Multi-modal uniform deep learning for RGB-D person re-identification. Pattern Recogn. 72, 446–457 (2017)

    Article  Google Scholar 

  17. Mogelmose, A., Bahnsen, C., Moeslund, T., Clapes, A., Escalera, S.: Tri-modal person re-identification with rgb, depth and thermal features. In: CVPR (2013)

    Google Scholar 

  18. John, V., Englebienne, G., Krose, B.: Person re-identification using height-based gait in colour depth camera. In: ICIP (2013)

    Google Scholar 

  19. Ye, M., Lan, X., Li, J., Yuen, P.C.: Hierarchical discriminative learning for visible thermal person re-identification. In: AAAI (2018)

    Google Scholar 

  20. Dai, P., Ji, R., Wang, H., Wu, Q., Huang, Y.: Cross-modality person re-identification with generative adversarial training. In: IJCAI (2018)

    Google Scholar 

  21. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  22. Prosser, B.J., Zheng, W.S., Gong, S., Xiang, T., Mary, Q.: Person re-identification by support vector ranking. In: BMVC (2010)

    Google Scholar 

  23. Zheng, W.S., Gong, S., Xiang, T.: Re-identification by relative distance comparison. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 653–668 (2013)

    Article  Google Scholar 

  24. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. PAMI 19(7), 711–720 (1997)

    Article  Google Scholar 

  25. Webb, A.R.: Statistical Pattern Recognition. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  26. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  27. Zhang, Y., Li, S.: Gabor-LBP based region covariance descriptor for person re-identification. In: Sixth International Conference on Image and Graphics, pp. 368–371 (2011)

    Google Scholar 

  28. Zhang, Y., Li, B., Lu, H., Irie, A., Ruan, X.: Sample-specific SVM learning for person re-identification. In: CVPR (2016)

    Google Scholar 

  29. An, L., Kafai, M., Yang, S., Bhanu, B.: Reference-based person re-identification. In: AVSS (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Kamal Uddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uddin, M.K., Lam, A., Fukuda, H., Kobayashi, Y., Kuno, Y. (2019). Exploiting Local Shape Information for Cross-Modal Person Re-identification. In: Huang, DS., Huang, ZK., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2019. Lecture Notes in Computer Science(), vol 11645. Springer, Cham. https://doi.org/10.1007/978-3-030-26766-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26766-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26765-0

  • Online ISBN: 978-3-030-26766-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics