Abstract
Braid groups are infinite non-abelian groups naturally arising from geometric braids. For two decades they have been proposed for cryptographic use. In braid group cryptography public braids often contain secret braids as factors and it is hoped that rewriting the product of braid words hides individual factors. We provide experimental evidence that this is in general not the case and argue that under certain conditions parts of the Garside normal form of factors can be found in the Garside normal form of their product. This observation can be exploited to decompose products of braids of the form ABC when only B is known.
Our decomposition algorithm yields a universal forgery attack on WalnutDSATM, which is one of the 20 proposed signature schemes that are being considered by NIST for standardization of quantum-resistant public-key cryptography. Our attack on WalnutDSATM can universally forge signatures within seconds for both the 128-bit and 256-bit security level, given one random message-signature pair. The attack worked on 99.8% and 100% of signatures for the 128-bit and 256-bit security levels in our experiments.
Furthermore, we show that the decomposition algorithm can be used to solve instances of the conjugacy search problem and decomposition search problem in braid groups. These problems are at the heart of other cryptographic schemes based on braid groups.
The full version can be found in the IACR eprint archive as article 2018/1142.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
About SecureRF. https://www.securerf.com/about-us/. Accessed 21 Nov 2018
Anshel, I., Atkins, D., Goldfeld, P., Gunnels, D.: Kayawood, a key agreement protocol (2017). Preprint: https://eprint.iacr.org/2017/1162. Version 30 Nov 2017
Anshel, I., Anshel, M., Fisher, B., Goldfeld, D.: New key agreement protocols in braid group cryptography. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 13–27. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_2
Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptography. Math. Res. Lett. 6, 287–292 (1999)
Anshel, I., Anshel, M., Goldfeld, D., Lemieux, S.: Key agreement, the algebraic eraser, and lightweight cryptography. Contemp. Math. 418, 1–34 (2007)
Anshel, I., Atkins, D., Goldfeld, D., Gunnells, P.E.: WalnutDSA: a quantum resistant group theoretic digital signature algorithm (2017). Preprint available at https://eprint.iacr.org/2017/058, 30 Nov 2017
Artin, E.: Theorie der Zöpfe. Abhandlungen aus dem mathematischen Seminar der Universität Hamburg. 4, 47–72 (1925)
Ben-Zvi, A., Blackburn, S.R., Tsaban, B.: A practical cryptanalysis of the Algebraic Eraser. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 179–189. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_7
Ben-Zvi, A., Kalka, A., Tsaban, B.: Cryptanalysis via algebraic spans. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 255–274. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_9
Beullens, W., Blackburn, S.: Practical attacks against the Walnut digital signature scheme (2018). Accepted to Asiacrypt 2018. Preprint: https://eprint.iacr.org/2018/318/20180404
Birman, J., Ko, K.H., Lee, S.J.: A new approach to the word and conjugacy problems in the braid groups. Adv. Math. 139(2), 322–353 (1998)
Birman, J.S.: Braids, Links, and Mapping Class Groups. (AM-82), vol. 82. Princeton University Press, Princeton (1975)
Birman, J.S., Gebhardt, V., González-Meneses, J.: Conjugacy in Garside groups I: cyclings, powers and rigidity. Groups Geom. Dyn. 1(3), 221–279 (2007)
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997)
Bressaud, X.: A normal form for braids. J. Knot Theory Ramif. 17(06), 697–732 (2008)
Burau, W.: Über Zopfgruppen und gleichsinnig verdrillte Verkettungen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 11, 179–186 (1935)
Dehornoy, P.: A fast method for comparing braids. Adv. Math. 125(2), 200–235 (1997)
Dehornoy, P.: Alternating normal forms for braids and locally Garside monoids. J. Pure Appl. Algebra 212(11), 2413–2439 (2008)
Ding, J., Yang, B.Y.: Multivariate public key cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 193–241. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_6
Elrifai, E.A., Morton, H.R.: Algorithms for positive braids. Q. J. Math. 45(180), 479–498 (1994)
Epstein, D., Cannon, J., Holt, D., Levy, S., Paterson, M., Thurston, W.: Word Processing in Groups (1992)
Garber, D.: Braid group cryptography. In: Braids: Introductory Lectures On Braids, Configurations and Their Applications, pp. 329–403. World Scientific (2010)
Garside, F.A.: The braid group and other groups. Q. J. Math. 20(1), 235–254 (1969)
Gebhardt, V.: A new approach to the conjugacy problem in Garside groups. J. Algebra 292(1), 282–302 (2005)
Gebhardt, V., González-Meneses, J.: The cyclic sliding operation in Garside groups. Mathematische Zeitschrift 265(1), 85–114 (2010)
Gebhardt, V., González-Meneses, J.: Generating random braids. J. Comb. Theory Ser. A 120(1), 111–128 (2013)
Gebhardt, V., Tawn, S.: Normal forms of random braids. J. Algebra 408, 115–137 (2014)
Goldwasser, S., Bellare, M.: Lecture notes on cryptography. Summer course “Cryptography and computer security” at MIT (1996)
Hart, D., Kim, D., Micheli, G., Pascual-Perez, G., Petit, C., Quek, Y.: A practical cryptanalysis of WalnutDSA\(^{\text{ TM }}\). In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 381–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_13
Hughes, J., Tannenbaum, A.: Length-based attacks for certain group based encryption rewriting systems. arXiv preprint cs/0306032 (2003)
Kalka, A., Teicher, M., Tsaban, B.: Short expressions of permutations as products and cryptanalysis of the Algebraic Eraser. Adv. Appl. Math. 49(1), 57–76 (2012)
Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)
Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J.S., Park, C.: New public-key cryptosystem using braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 166–183. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_10
Kotov, M., Menshov, A., Ushakov, A.: An attack on the Walnut digital signature algorithm. Des. Codes Crypt. 1–20 (2018)
McEliece, R.: A public-key cryptosystem based on algebraic coding theory. Deep. Space Netw. Prog. Rep. 44, 114–116 (1978)
Merz, S.P.: Non obfuscating power of Garside normal forms (2018). GitHub repository at https://github.com/SimonMerz/Non-obfuscating-power-of-Garside-normal-forms
Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_5
Myasnikov, A.D., Ushakov, A.: Length based attack and braid groups: cryptanalysis of Anshel-Anshel-Goldfeld key exchange protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 76–88. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_6
National Institute for Standards and Technology (NIST): Post-quantum crypto standardization (2016). https://csrc.nist.gov/projects/post-quantum-cryptography
NIST PQC Forum. https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum. Accessed 21 Nov 2018
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 124–134. IEEE (1994)
Shpilrain, V., Ushakov, A.: Thompson’s group and public key cryptography. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 151–163. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_11
Stolbunov, A.: Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235 (2010)
Van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. J. Cryptol. 12(1), 1–28 (1999)
Acknowledgments
The authors would like to thank Ward Beullens and the anonymous reviewers for their helpful feedback. This work was produced as part of a master’s thesis of the first author at the University of Oxford. He is now supported by the EPSRC as part of the Centre for Doctoral Training in Cyber Security at Royal Holloway, University of London (EP/P009301/1).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Merz, SP., Petit, C. (2019). Factoring Products of Braids via Garside Normal Form. In: Lin, D., Sako, K. (eds) Public-Key Cryptography – PKC 2019. PKC 2019. Lecture Notes in Computer Science(), vol 11443. Springer, Cham. https://doi.org/10.1007/978-3-030-17259-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-17259-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17258-9
Online ISBN: 978-3-030-17259-6
eBook Packages: Computer ScienceComputer Science (R0)