Abstract
Venue recommendation strategies are built upon Collaborative Filtering techniques that rely on Matrix Factorisation (MF), to model users’ preferences. Various cross-domain strategies have been proposed to enhance the effectiveness of MF-based models on a target domain, by transferring knowledge from a source domain. Such cross-domain recommendation strategies often require user overlap, that is common users on the different domains. However, in practice, common users across different domains may not be available. To tackle this problem, recently, several cross-domains strategies without users’ overlaps have been introduced. In this paper, we investigate the performance of state-of-the-art cross-domain recommendation that do not require overlap of users for the venue recommendation task on three large Location-based Social Networks (LBSN) datasets. Moreover, in the context of cross-domain recommendation we extend a state-of-the-art sequential-based deep learning model to boost the recommendation accuracy. Our experimental results demonstrate that state-of-the-art cross-domain recommendation does not clearly contribute to the improvements of venue recommendation systems, and, further we validate this result on the latest sequential deep learning-based venue recommendation approach. Finally, for reproduction purposes we make our implementations publicly available.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(S \in \{0,1\}^{m \times m}\) is the adjacency matrix representing the relationship between users.
- 2.
The shared patterns denote similarities between the latent factors of the domains.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
The default learning rate setting of the Adam optimiser in Keras.
- 9.
Recall that we remove sparse users and venues.
References
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 8, 30–37 (2009)
Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: Proceedings of WSDM (2011)
Manotumruksa, J., Macdonald, C., Ounis, I.: Matrix factorisation with word embeddings for rating prediction on location-based social networks. In: Jose, J.M., et al. (eds.) ECIR 2017. LNCS, vol. 10193, pp. 647–654. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56608-5_61
Manotumruksa, J., Macdonald, C., Ounis, I.: Regularising factorised models for venue recommendation using friends and their comments. In: Proceedings of CIKM (2016)
Yuan, F., Guo, G., Jose, J., Chen, L., Yu, H.: Joint geo-spatial preference and pairwise ranking for point-of-interest recommendation. In: Proceedings of ICTAI (2016)
Yu, F., Liu, Q., Wu, S., Wang, L., Tan, T.: A dynamic recurrent model for next basket recommendation. In: Proceedings of SIGIR (2016)
Tang, S., Wu, Z., Chen, K.: Movie recommendation via BLSTM. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin, C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10133, pp. 269–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51814-5_23
Zhang, Y., et al.: Sequential click prediction for sponsored search with recurrent neural networks. In: Proceedings of AAAI (2014)
Cheng, C., Yang, H., Lyu, M.R., King, I.: Where you like to go next: successive point-of-interest recommendation. In: Proceedings of IJCAI (2013)
Manotumruksa, J., Macdonald, C., Ounis, I.: A deep recurrent collaborative filtering framework for venue recommendation. In: Proceedings of CIKM (2017)
Li, B., Yang, Q., Xue, X.: Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction. In: Proceedings of IJCAI (2009)
Zang, Y., Hu, X.: LKT-FM: a novel rating pattern transfer model for improving non-overlapping cross-domain collaborative filtering. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 641–656. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_39
Shu, K., Wang, S., Tang, J., Wang, Y., Liu, H.: Crossfire: cross media joint friend and item recommendations. In: Proceedings of WSDM (2018)
Farseev, A., Samborskii, I., Filchenkov, A., Chua, T.S.: Cross-domain recommendation via clustering on multi-layer graphs. In: Proceedings of SIGIR (2017)
Hu, L., Cao, J., Xu, G., Cao, L., Gu, Z., Zhu, C.: Personalized recommendation via cross-domain triadic factorization. In: Proceedings of WWW (2013)
Hu, L., Cao, L., Cao, J., Gu, Z., Xu, G., Yang, D.: Learning informative priors from heterogeneous domains to improve recommendation in cold-start user domains (2016)
Mirbakhsh, N., Ling, C.X.: Improving top-n recommendation for cold-start users via cross-domain information. In: Proceedings of TKDD (2015)
He, M., Zhang, J., Yang, P., Yao, K.: Robust transfer learning for cross-domain collaborative filtering using multiple rating patterns approximation. In: Proceedings of WSDM (2018)
Coyle, M., Smyth, B.: (Web search)shared: social aspects of a collaborative, community-based search network. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.) AH 2008. LNCS, vol. 5149, pp. 103–112. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70987-9_13
Cremonesi, P., Quadrana, M.: Cross-domain recommendations without overlapping data: myth or reality? In: Proceedings of RecSys (2014)
Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization. In: Proceedings of SIGKDD (2008)
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of UAI (2009)
He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of SIGIR (2016)
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of WWW (2017)
Xiang, L., et al.: Temporal recommendation on graphs via long-and short-term preference fusion. In: Proceedings of SIGKDD, pp. 723–732. ACM (2010)
Lee, S., Song, S.i., Kahng, M., Lee, D., Lee, S.g.: Random walk based entity ranking on graph for multidimensional recommendation. In: Proceedings of RecSys, pp. 93–100. ACM (2011)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Manotumruksa, J., Rafailidis, D., Macdonald, C., Ounis, I. (2019). On Cross-Domain Transfer in Venue Recommendation. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science(), vol 11437. Springer, Cham. https://doi.org/10.1007/978-3-030-15712-8_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-15712-8_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15711-1
Online ISBN: 978-3-030-15712-8
eBook Packages: Computer ScienceComputer Science (R0)