Skip to main content

Anchored Multiperspective Visualization for Efficient VR Navigation

  • Conference paper
  • First Online:
Virtual Reality and Augmented Reality (EuroVR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11162))

Included in the following conference series:

  • 2175 Accesses

Abstract

This paper presents a novel multiperspective visualization (MPV) approach designed to improve navigation efficiency in Virtual Reality applications. The MPV is continuous and non-redundant, it shows the near part of the scene with a conventional, first-person visualization to anchor the user, and it is controlled with user head translations and rotations reminiscent of natural motion. Three types of anchored MPV are introduced, one that provides a lateral disocclusion effect, allowing the user to see around occluders and through side portals, one that provides a vertical disocclusion effect, allowing the user to see over and on top of occluders, and one that provides teleportation, allowing the user to relocate. The VR navigation efficiency benefits of the anchored MPV have been analyzed in a user study. Significant improvements were achieved in the metrics of number of teleportations and total distance traveled. In these metrics, large or greater Cohen’s d effect sizes were observed at p-values below 0.05 in a first VR scene, while medium effect sizes at p-values of 0.1 or better were observed in a second VR scene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Point & teleport locomotion technique for virtual reality. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, CHI PLAY 2016, pp. 205–216. ACM, New York (2016)

    Google Scholar 

  2. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Psychology Press, London (2009)

    MATH  Google Scholar 

  3. Cui, J., Rosen, P., Popescu, V., Hoffmann, C.: A curved ray camera for handling occlusions through continuous multiperspective visualization. IEEE Trans. Vis. Comput. Graph. 16(6), 1235–1242 (2010)

    Article  Google Scholar 

  4. Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Proceedings of the 2014 Conference on Interactive Entertainment, IE 2014, pp. 8:1–8:9. ACM, New York (2014)

    Google Scholar 

  5. Habgood, J., Moore, D., Wilson, D., Alapont, S.: Rapid, continuous movement between nodes as an accessible virtual reality locomotion technique. In: Proceedings of the 25th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2018, Reutlingen, Germany (2018)

    Google Scholar 

  6. Hartley, R.I., Gupta, R.: Linear pushbroom cameras. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 555–566. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57956-7_63

    Chapter  Google Scholar 

  7. Kameda, Y., Takemasa, T., Ohta, Y.: Outdoor see-through vision utilizing surveillance cameras. In: Third IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 151–160, November 2004

    Google Scholar 

  8. Kunert, A., Kulik, A., Beck, S., Froehlich, B.: Photoportals: shared references in space and time. In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, CSCW 2014, pp. 1388–1399. ACM, New York (2014)

    Google Scholar 

  9. Laviola, J.J.: A discussion of cybersickness in virtual environments. SIGCHI Bull. 32, 47–56 (2000)

    Article  Google Scholar 

  10. Li, W., Agrawala, M., Curless, B., Salesin, D.: Automated generation of interactive 3D exploded view diagrams. ACM Trans. Graph. 27(3), 101:1–101:7 (2008)

    Article  Google Scholar 

  11. Mei, C., Popescu, V., Sacks, E.: The occlusion camera. In: Computer Graphics Forum (2005)

    Article  Google Scholar 

  12. Microsoft: Windows mixed reality. http://www.microsoft.com/

  13. Montello, D.R.: Scale and multiple psychologies of space. In: Frank, A.U., Campari, I. (eds.) COSIT 1993. LNCS, vol. 716, pp. 312–321. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57207-4_21

    Chapter  Google Scholar 

  14. Neat Corporation: Budget cuts (2018). http://neatcorporation.com/

  15. Popescu, V., Rosen, P., Adamo-Villani, N.: The graph camera. ACM Trans. Graph. 28(5), 158:1–158:8 (2009)

    Article  Google Scholar 

  16. Rademacher, P., Bishop, G.: Multiple-center-of-projection images. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1998, pp. 199–206. ACM, New York (1998)

    Google Scholar 

  17. Ragan, E.D., Scerbo, S., Bacim, F., Bowman, D.A.: Amplified head rotation in virtual reality and the effects on 3D search, training transfer, and spatial orientation. IEEE Trans. Vis. Comput. Graph. 23(8), 1880–1895 (2017)

    Article  Google Scholar 

  18. Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected walking. In: Eurographics 2001 - Short Presentations. Eurographics Association (2001)

    Google Scholar 

  19. Razzaque, S., Swapp, D., Slater, M., Whitton, M.C., Steed, A.: Redirected walking in place. In: Proceedings of the Workshop on Virtual Environments 2002, EGVE 2002, pp. 123–130. Eurographics Association, Aire-la-Ville (2002)

    Google Scholar 

  20. Ruddle, R.A., Lessels, S.: The benefits of using a walking interface to navigate virtual environments. ACM Trans. Comput.-Hum. Interact. 16(1), 5:1–5:18 (2009)

    Article  Google Scholar 

  21. Sawilowsky, S.S.: New effect size rules of thumb. J. Mod. Appl. Stat. Methods 8(2), 597–599 (2009)

    Article  MathSciNet  Google Scholar 

  22. id Software: Quake 3 Arena (1999)

    Google Scholar 

  23. Souman, J.L.: CyberWalk: enabling unconstrained omnidirectional walking through virtual environments. ACM Trans. Appl. Percept. 8(4), 25:1–25:22 (2008)

    Google Scholar 

  24. Sun, Q., Wei, L.Y., Kaufman, A.: Mapping virtual and physical reality. ACM Trans. Graph. 35(4), 64:1–64:12 (2016)

    Article  Google Scholar 

  25. Usoh, M., et al.: Walking \(>\) walking-in-place \(>\) flying, in virtual environments. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999, pp. 359–364. ACM Press/Addison-Wesley Publishing Co., New York (1999)

    Google Scholar 

  26. Weissker, T., Kunert, A., Froehlich, B., Kulik, A.: Spatial updating and simulator sickness during steering and jumping in immersive virtual environments. In: Proceedings of the 25th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2018, Reutlingen, Germany (2018)

    Google Scholar 

  27. Williams, B., et al.: Exploring large virtual environments with an HMD when physical space is limited. In: Proceedings of the 4th Symposium on Applied Perception in Graphics and Visualization, APGV 2007, pp. 41–48. ACM, New York (2007)

    Google Scholar 

  28. Wu, M.L., Popescu, V.: Multiperspective focus+context visualization. IEEE Trans. Vis. Comput. Graph. 22(5), 1555–1567 (2016)

    Article  Google Scholar 

  29. Wu, M.L., Popescu, V.: Efficient VR and AR navigation through multiperspective occlusion management. IEEE Trans. Vis. Comput. Graph. (2017). https://doi.org/10.1109/TVCG.2017.2778249

  30. Xie, X., et al.: A system for exploring large virtual environments that combines scaled translational gain and interventions. In: Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization, APGV 2010, pp. 65–72. ACM, New York (2010)

    Google Scholar 

  31. Yu, J., McMillan, L.: General linear cameras. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 14–27. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24671-8_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Lin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, ML., Popescu, V. (2018). Anchored Multiperspective Visualization for Efficient VR Navigation. In: Bourdot, P., Cobb, S., Interrante, V., kato, H., Stricker, D. (eds) Virtual Reality and Augmented Reality. EuroVR 2018. Lecture Notes in Computer Science(), vol 11162. Springer, Cham. https://doi.org/10.1007/978-3-030-01790-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01790-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01789-7

  • Online ISBN: 978-3-030-01790-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics