Skip to main content

Conflation of Geospatial Data

  • Reference work entry
Encyclopedia of GIS

Synonyms

Geospatial data alignment; Geospatial data reconciliation; Computer cartography; Imagery conflation

Definition

Geospatial data conflation is the compilation or reconciliation of two different geospatial datasets covering overlapping regions [1]. In general, the goal of conflation is to combine the best quality elements of both datasets to create a composite dataset that is better than either of them. The consolidated dataset can then provide additional information that cannot be gathered from any single dataset.

Based on the types of geospatial datasets dealt with, the conflation technologies can be categorized into the following three groups:

  • Vector to vector data conflation: A typical example is the conflation of two road networks of different accuracy levels. Figure 1shows a concrete example to produce a superior dataset by integrating two road vector datasets: road network from US Census TIGER/Line files, and road network from the department of transportation, St. Louis,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    http://www.digitalcorp.com/conflex.htm

  2. 2.

    http://www.esea.com/products/

  3. 3.

    http://maps.google.com/

  4. 4.

    http://terraservice.net/

Recommended Reading

  1. Saalfeld, A.: Conflation: Automated Map Compilation. Int. J. Geogr. Inf. Sci. 2(3), 217–228 (1988)

    Article  Google Scholar 

  2. Walter, V., Fritsch, D.: Matching Spatial Data Sets: a Statistical Approach. Int. J. Geogr. Inf. Sci. 5(1), 445–473 (1999)

    Article  Google Scholar 

  3. Ware, J.M., Jones, C.B.: Matching and Aligning Features in Overlayed Coverages. In: Proceedings of the 6th ACM Symposium on Geographic Information Systems. Washingnton, D.C. (1998)

    Google Scholar 

  4. Cobb, M., Chung, M.J., Miller, V., Foley, H. III, Petry, F.E., Shaw, K.B.: A Rule-Based Approach for the Conflation of Attributed Vector Data. GeoInformatica 2(1), 7–35 (1998)

    Article  Google Scholar 

  5. Filin, S., Doytsher, Y.: A Linear Conflation Approach for the Integration of Photogrammetric Information and GIS Data. Int. Arch. Photogramm. Remote Sens. 33, 282–288 (2000)

    Google Scholar 

  6. Flavie, M., Fortier, A., Ziou, D., Armenakis, C., Wang, S.: Automated Updating of Road Information from Aerial Images. In: Proceedings of American Society Photogrammetry and Remote Sensing Conference. Amsterdam, Holland (2000)

    Google Scholar 

  7. Agouris, P., Stefanidis, A., Gyftakis, S.: Differential Snakes for Change Detection in Road Segments. Photogramm. Eng. Remote Sens. 67(12), 1391–1399 (2001)

    Google Scholar 

  8. Chen, C.-C., Knoblock, C.A., Shahabi, C.: Automatically conflating road vector data with orthoimagery. Geoinformatica 10(4), 495–530 (2006)

    Article  Google Scholar 

  9. Eidenbenz, C., Kaser, C., Baltsavias, E.: ATOMI – Automated Reconstruction of Topographic Objects from Aerial Images using Vectorized Map Information. Int. Arch. Photogramm. Remote Sens. 33(Part 3/1), 462–471 (2000)

    Google Scholar 

  10. Chen, C.-C., Knoblock, C.A., Shahabi, C., Chiang, Y.-Y., Thakkar, S.: Automatically and Accurately Conflating Orthoimagery and Street Maps. In: Proceedings of the 12th ACM International Symposium on Advances in Geographic Information Systems. Washington, D.C., USA (2004)

    Google Scholar 

  11. Seedahmed, G., Martucci, L.: Automated Image Registration Using Geometrical Invariant Parameter Space Clustering (GIPSC). In: Proceedings of the Photogrammetric Computer Vision. Graz, Austria (2002)

    Google Scholar 

  12. Dare, P., Dowman, I.: A new approach to automatic feature based registration of SAR and SPOT images. Int. Arch. Photogramm. Remote Sens. 33(B2), 125–130 (2000)

    Google Scholar 

  13. Chen, C.-C., Shahabi, C., Knoblock, C.A., Kolahdouzan, M.: Automatically and Efficiently Matching Road Networks with Spatial Attributes in Unknown Geometry Systems. In: Proceedings of the Third Workshop on Spatio‐temporal Database Management (co-located with VLDB2006). Seoul, Korea (2006)

    Google Scholar 

  14. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vision. 1(4), 321–331 (1987)

    Article  Google Scholar 

  15. Chen, C.-C., Shahabi, C., Knoblock, C.A.: Utilizing Road Network Data for Automatic Identification of Road Intersections from High Resolution Color Orthoimagery. In: Proceedings of the Second Workshop on Spatio‐temporal Database Management (co-located with VLDB2004). Toronto, Canada (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Chen, CC., Knoblock, C. (2008). Conflation of Geospatial Data. In: Shekhar, S., Xiong, H. (eds) Encyclopedia of GIS. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35973-1_182

Download citation

Publish with us

Policies and ethics