Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 134))

  • 929 Accesses

Abstract

Curvature driven flows have been extensively considered from a deterministic point of view. Besides their mathematical interest, they have been shown to be useful for a number of applications including crystal growth, flame propagation, and computer vision. In this paper, we describe a random particle system, evolving on the discretized unit circle, whose profile converges toward the Gauss-Minkowsky transformation of solutions of curve shortening flows initiated by convex curves. Our approach may be considered as a type of stochastic crystalline algorithm. Our proofs are based on certain techniques from the theory of hydrodynamical limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Angenent, G. Sapiro, and A. Tannenbaum, On the affine heat equation for non-convex curves, Journal of the American Mathematical Society 11 (1998), pp. 601–634.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Andrews, Evolving convex curves, Calc. Var. 7 (1998), pp. 315–371.

    Article  MATH  Google Scholar 

  3. B. Andrews, Non-convergence and instability in the limiting behaviour of curves evolving by curvature, to appear in Communications in Analysis and Geometry.

    Google Scholar 

  4. G. Ben Arous, A. Tannenbaum, and O. Zeitouni, Stochastic approximations to curve shortening flows via particle systems, Technical Report, February 2002. Preprint may be found at http://www.ee.technion.ac.il/~zeitouni/ps/hydro6.ps.

  5. H. Buseman, Convex surfaces, Interscience Publ. (1958).

    Google Scholar 

  6. K.S. Chow and X.P. Zhu, The curve shortening problem, Chapman-Hall/CRC (2001).

    Book  Google Scholar 

  7. P. Del Moral and L. Miclo, Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering, Séminaire de Probabilités XXXIV, Lecture Notes in Math. 1729, Springer (2000), pp. 1–145.

    Google Scholar 

  8. M. Gage and R.S. Hamilton, The heat equation shrinking convex planar curves, J. Diff. Geom. 23 (1986), pp. 69–96.

    MathSciNet  MATH  Google Scholar 

  9. M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geometry 26 (1987), pp. 285–314.

    MathSciNet  MATH  Google Scholar 

  10. S. Haker, G. Sapiro, and A. Tannenbaum, Knowledge-based segmentation of SAR data with learned priors, IEEE Trans. Image Processing 9 (2000), pp. 298–302.

    Article  Google Scholar 

  11. C. Kipnis and C. Landim, Scaling limits of interacting particle systems, Springer (1999).

    MATH  Google Scholar 

  12. G.M. Lieberman, Second order parabolic differential equations, World Scientific (1996).

    MATH  Google Scholar 

  13. M. Mourragui, Comportement hydrodynamique et entropie relative des processus de sauts, de naissances et de morts, Ann. Inst. H. Poincaré 32 (1996), pp. 361–385.

    MathSciNet  MATH  Google Scholar 

  14. P. Olver, G. Sapiro, and A. Tannenbaum, Differential invariant signatures and flows in computer vision: a symmetry group approach, in Geometry Driven Diffusion in Computer Vision, edited by Bart Romeny, Kluwer, Holland, 1994.

    Google Scholar 

  15. M.H. Protter and H.F. Weinberger, Maximum principles in differential equations, Springer (1984).

    Book  MATH  Google Scholar 

  16. G. Sapiro and A. Tannenbaum, On affine planar curve evolution, J. Functl. Anal 119 (1994), pp. 79–120.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Taniyama and H. Matano, Formation of singularities in general curve shortening equations, preprint.

    Google Scholar 

  18. T.K. Ushijima and S. Yazaki, Convergence of a crystalline algorithm for the motion of a closed convex curve by a power of curvature V = K α, SIAM. J. Numer. Anal 37 (2000), pp. 500–522.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Vershik and O. Zeitouni, Large deviations in the geometry of convex lattice polygons, Isr. J. Math. 109 (1999), pp. 13–27.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Arous, G.B., Tannenbaum, A., Zeitouni, O. (2003). Crystalline Stochastic Systems and Curvature Driven Flows. In: Rosenthal, J., Gilliam, D.S. (eds) Mathematical Systems Theory in Biology, Communications, Computation, and Finance. The IMA Volumes in Mathematics and its Applications, vol 134. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21696-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21696-6_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2326-4

  • Online ISBN: 978-0-387-21696-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics