Abstract
We develop a new critical pair criterion for term completion modulo equational theories. Our criterion relies on computing generalised critical pairs. It is compatible with most known critical pair criteria based on subconnectedness. Therefore our procedure can profit from the additional benefits of other critical pair criteria. A first test implementation has shown the practical usefulness of the new criterion for completion modulo associative and commutative theories.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Leo Bachmair and Nachum Dershowitz. Critical pair criteria for completion. Journal of Symbolic Computation, 6:1–18, 1988.
George M. Bergman. The diamond lemma for ring theory. Advances in Mathematics, 29:178–218, 1978.
[BHK+88] H.-J. Bürckert, A. Herold, D. Kapur, J. H. Siekmann, M. E. Stickel, M. Tepp, and H. Zhang. Opening the ac-unification race. Journal of Automated Reasoning, 4:465–474, 1988.
Bruno Buchberger and Rüdiger Loos. Algebraic simplification. In Computer Algebra, pages 14–43. Springer-Verlag, 1982.
Timothy B. Baird, Gerald E. Peterson, and Ralph W. Wilkerson. Complete sets of reductions modulo associativity, commutativity and identity. In Nachum Dershowitz, editor, Rewriting Techniques and Applications (LNCS355), pages 29–44. Springer-Verlag, 1989. (Proc. RTA'89, Chapel Hill, NC, USA, April 1989).
Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Universität Innsbruck, 1965.
Bruno Buchberger. A criterion for detecting unnecessary reductions in the construction of Gröbner-Bases. In E. Ng, editor, Symbolic and Algebraic Computing (LNCS 72), pages 3–21. Springer-Verlag, 1979. (Proc. EUROSAM'79, Marseille, France).
Reinhard Bündgen. Completion of integral polynomials by AC-term completion. In Stephen M. Watt, editor. International Symposium on Symbolic and Algebraic Computation, pages 70–78, 1991. (Proc. ISSAC'91, Bonn, Germany, July 1991).
Reinhard Bündgen. Term Completion Versus Algebraic Completion. PhD thesis, Universität Tübingen, D-7400 Tübingen, Germany, May 1991. (reprinted as report WSI 91-3).
Reinhard Bündgen. Reduce the redex → ReDuX. In Claude Kirchner, editor, Rewriting Techniques and Applications (LNCS 690), pages 446–450. Springer-Verlag, 1993. (Proc. RTA'93, Montreal, Canada, June 1993).
Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van Leeuven, editor, Formal Models and Semantics, volume B of Handbook of Theoretical Computer Science, chapter 6. Elsevier, 1990.
François Fages. Associative commutative unification. Journal of Symbolic Computation, 3:257–275, 1987.
Albrecht Fortenbacher. An algebraic approach to unification under associativity and commutativity. Journal of Symbolic Computation, 3:217–229, 1987.
Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a set of equations. SIAM J. on Computing, 14(4): 1155–1194, 1986.
Jean-Pierre Jouannaud and Claude Marché. Termination and completion modulo associativity, commutativity and identity. Theoretical Computer Science, 104:29–51, 1992.
Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebra. In J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon Press, 1970. (Proc. of a conference held in Oxford, England, 1967).
Jan Willem Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors, Background: Computational Strcutures, volume 2 of Handbook of Logic in Computer Science, chapter 1. Oxford University Press, 1992.
Deepak Kapur, David R. Musser, and Paliath Narendran. Only prime superpositions need be considered in the Knuth-Bendix completion procedure. Journal of Symbolic Computation, 6:19–36, 1988.
Wolfgang Küchlin. An implementation and investigation of the Knuth-Bendix completion algorithm. Master's thesis, Informatik I, Universität Karlsruhe, D-7500 Karlsruhe, W-Germany, 1982. (Reprinted as Report 17/82.).
Wolfgang Küchlin. A confluence criterion based on the generalised Knuth-Bendix algorithm. In B. F. Caviness, editor, Eurocal'85 (LNCS 204), pages 390–399. Springer-Verlag, 1985. (Proc. Eurocal'85, Linz, Austria, April 1985).
Wolfgang Küchlin. Equational Completion by Proof Transformation. PhD thesis, Swiss Federal Institute of Technology (ETH), CH-8092 Zürich, Switzerland, June 1986. (Also as Equational Completion by Proof Simplification, Report 86-02, Mathematics, ETH Zürich, May 1986).
Wolfgang Küchlin. A generalized Knuth-Bendix algorithm. Technical Report 86-01, Mathematics, Swiss Federal Institute of Technology (ETH), CH-8092 Zürich, Switzerland, January 1986.
Mike Lai. On how to move mountains ‘associatively and commutatively'. In Nachum Dershowitz, editor, Rewriting Techniques and Applications (LNCS 355), pages 187–202. Springer-Verlag, 1989. (Proc. RTA'89, Chapel Hill, NC, USA. April 1989).
Dallas Lankford and A. M. Ballantyne. Decision procedures for simple equational theories with commutative-associative axioms: Complete sets of commutative-associative reductions. Technical Report Report ATP-39, Department of Mathematics and Computer Sciences, University of Texas, Austin, August 1977.
Dallas Lankford and A. M. Ballantyne. Blocked permutative narrowing and resolution. In Proc. 4th Workshop on Automated Deduction, pages 168–174, Austin, Texas, February 1979. (Corrigendum of June, 1979, Addendum of January, 1984).
M. Livesey and J. Siekmann. Unification of bags and sets. Technical report, Institut für Informatik I, Universität Karlsruhe, 7500 Karlsruhe, Fed. Rep. of Germany, 1976.
M. H. A. Newman. On theories with a combinatorial definition of “equivalence”. Annals of Mathematics, 43(2):223–243, 1942.
David Plaisted. Equational reasoning and term rewriting systems. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Logical Foundations, volume I of Handbook of Logic in Artificial Intelligence and Logic Programming, chapter 5. Oxford University Press, 1993.
G. Peterson and M. Stickel. Complete sets of reductions for some equational theories. Journal of the ACM, 28:223–264, 1981.
J. R. Slagle. Automated theorem-proving for theories with simplifiers, commutativity, and associativity. Journal of the ACM, 21(4): 622–642, October 1974.
Mark E. Stickel. A unification algorithm for associative-commutative functions. JACM, 28(3):423–434, July 1981.
Franz Winkler and Bruno Buchberger. A criterion for eliminating unnecessary reductions in the Knuth-Bendix algorithm. In Proc. Colloquium on Algebra, Combinatorics and Logic in Computer Science. J. Bolyai Math. Soc., J. Bolyai Math. Soc. and North-Holland, 1985. (Colloquium Mathematicum Societatis J. Bolyai, Györ, Hungary, 1983).
Franz Winkler. The Church-Rosser Property in Computer Algebra and Special Theorem Proving: An Investigation of Critical-Pair/Completion Algorithms. PhD thesis, Johannes Kepler Universität Linz, May 1984.
Hanatao Zhang and Deepak Kapur. Consider only general superpositions in completion procedures. In Nachum Dershowitz, editor, Rewriting Techniques and Applications (LNCS 355), pages 513–527. Springer-Verlag, 1989. (Proc. RTA'89, Chapel Hill, NC, USA, April 1989).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bündgen, R. (1994). On pot, pans and pudding or how to discover generalised critical Pairs. In: Bundy, A. (eds) Automated Deduction — CADE-12. CADE 1994. Lecture Notes in Computer Science, vol 814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58156-1_50
Download citation
DOI: https://doi.org/10.1007/3-540-58156-1_50
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58156-7
Online ISBN: 978-3-540-48467-7
eBook Packages: Springer Book Archive