Skip to main content

Probabilisitc Logic Programming under Maximum Entropy

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1638))

Abstract

In this paper, we focus on the combination of probabilistic logic programming with the principle of maximum entropy. We start by defining probabilistic queries to probabilistic logic programs and their answer substitutions under maximum entropy. We then present an efficient linear programming characterization for the problem of deciding whether a probabilistic logic program is satisfiable. Finally, and as a central contribution of this paper, we introduce an efficient technique for approximative probabilistic logic programming under maximum entropy. This technique reduces the original entropy maximization task to solving a modified and relatively small optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 10, pages 493–574. MIT Press, 1990.

    Google Scholar 

  2. F. Bacchus, A. Grove, J. Y. Halpern, and D. Koller. From statistical knowledge bases to degrees of beliefs. Artif. Intell., 87:75–143, 1996.

    Article  MathSciNet  Google Scholar 

  3. B. de Finetti. Theory of Probability. J. Wiley, New York, 1974.

    Google Scholar 

  4. A. Dekhtyar and V. S. Subrahmanian. Hybrid probabilistic programs. In Proc. of the 14th International Conference on Logic Programming, pages 391–405, 1997.

    Google Scholar 

  5. R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about probabilities. Inf. Comput., 87:78–128, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Fischer and M. Schramm. tabl — a tool for efficient compilation of probabilistic constraints. Technical Report TUM-I9636, TU München, 1996.

    Google Scholar 

  7. A. J. Grove, J. H. Halpern, and D. Koller. Random worlds and maximum entropy. J. Artif. Intell. Res., 2:33–88, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Haddawy. Generating Bayesian networks from probability logic knowledge bases. In Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence, pages 262–269. Morgan Kaufmann, 1994.

    Google Scholar 

  9. J. Y. Halpern. An analysis of first-order logics of probability. Artif. Intell., 46:311–350, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Jaeger. Relational Bayesian networks. In Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence, pages 266–273. Morgan Kaufmann, 1997.

    Google Scholar 

  11. E. T. Jaynes. Papers on Probability, Statistics and Statistical Physics. D. Reidel, Dordrecht, Holland, 1983.

    MATH  Google Scholar 

  12. R. W. Johnson and J. E. Shore. Comments on and corrections to “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy”. IEEE Trans. Inf. Theory, IT-29(6):942–943, 1983.

    Article  MathSciNet  Google Scholar 

  13. G. Kern-Isberner. Characterizing the principle of minimum cross-entropy within a conditional-logical framework. Artif. Intell., 98:169–208, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Lukasiewicz. Probabilistic logic programming. In Proc. of the 13th European Conference on Artificial Intelligence, pages 388–392. J. Wiley & Sons, 1998.

    Google Scholar 

  15. T. Lukasiewicz. Local probabilistic deduction from taxonomic and probabilistic knowledge-bases over conjunctive events. Int. J. Approx. Reason., 1999. To appear.

    Google Scholar 

  16. T. Lukasiewicz. Probabilistic deduction with conditional constraints over basic events. J. Artif. Intell. Res., 1999. To appear.

    Google Scholar 

  17. R. T. Ng. Semantics, consistency, and query processing of empirical deductive databases. IEEE Trans. Knowl. Data Eng., 9(1):32–49, 1997.

    Article  Google Scholar 

  18. R. T. Ng and V. S. Subrahmanian. A semantical framework for supporting subjective and conditional probabilities in deductive databases. J. Autom. Reasoning, 10(2):191–235, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  19. N. J. Nilsson. Probabilistic logic. Artif. Intell., 28:71–88, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. B. Paris and A. Vencovska. A note on the inevitability of maximum entropy. Int. J. Approx. Reasoning, 14:183–223, 1990.

    Article  MathSciNet  Google Scholar 

  21. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, CA, 1988.

    Google Scholar 

  22. D. Poole. Probabilistic Horn abduction and Bayesian networks. Artif. Intell., 64:81–129, 1993.

    Article  MATH  Google Scholar 

  23. W. Rödder and G. Kern-Isberner. Representation and extraction of information by probabilistic logic. Inf. Syst., 21(8):637–652, 1997.

    Article  Google Scholar 

  24. W. Rödder and C.-H. Meyer. Coherent knowledge processing at maximum entropy by SPIRIT. In Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence, pages 470–476. Morgan Kaufmann, 1996.

    Google Scholar 

  25. M. Schramm, V. Fischer, and P. Trunk. Probabilistic knowledge representation and reasoning with maximum entropy-the system PIT, Technical report (forthcoming), 1999.

    Google Scholar 

  26. C. E. Shannon and W. Weaver. A Mathematical Theory of Communication. University of Illinois Press, Urbana, Illinois, 1949.

    Google Scholar 

  27. J. E. Shore and R. W. Johnson. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory, IT-26:26–37, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lukasiewicz, T., Kern-Isberner, G. (1999). Probabilisitc Logic Programming under Maximum Entropy. In: Hunter, A., Parsons, S. (eds) Symbolic and Quantitative Approaches to Reasoning and Uncertainty. ECSQARU 1999. Lecture Notes in Computer Science(), vol 1638. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48747-6_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-48747-6_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66131-3

  • Online ISBN: 978-3-540-48747-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics