Abstract
We present Hierarchical Genetic Strategy (HGS) as a family of Markov chains applying Vose’s mathematical model for Simple Genetic Algorithm. Studying its asymptotic properties and performing simply experiments we try to compare efficiency of HGS and sequential genetic algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kołodziej J., Gwizdała R., Wojtusiak J.: Hierarchical Genetic Strategy as a Method of Improving Search Efficiency, Advances in Multi-Agents Systems, R Schaefer and S. Sędziwy eds.,UJ Press, Chapter 7, 200, pp. 149–161.
Obuchowicz A.: Performance Analysis of Crossing Multi-Dimensional Saddles by Evolutionary Search Algorithms, Proc. of the 4-th Polish Conference on Evolutionary Algorithms, Lcadek Zdrój, 2000.06.05-08, pp. 155–162.
Schaefer R., Jabłoński Z. J.: On The Convergence Of Sampling Measures In Global Genetic Search, Submitted to Proc. of the PPAM’01, 4-th International Conference On Parallel Processing And Applied Mathematics, Nałęczów, Poland, 2001,09.9-12.
Vose M.D.: The Simple Genetic Algorithm, MIT Press (1999).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kolodziej, J. (2002). Modelling Hierarchical Genetic Strategy as a Family of Markov Chains. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2001. Lecture Notes in Computer Science, vol 2328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48086-2_65
Download citation
DOI: https://doi.org/10.1007/3-540-48086-2_65
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43792-5
Online ISBN: 978-3-540-48086-0
eBook Packages: Springer Book Archive