Skip to main content

Solving Large Systems of Differential Equations with PaViS

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2328))

  • 546 Accesses

Abstract

A short presentation and a benchmark of a prototyping tool that facilitates the use of a network of computers or a parallel computer to solve course-grained large-scale problems are the subjects of this paper. The benchmark is concerning systems in a range of tens to hundreds ordinary differential equations solved by parallel numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Casanova H., and Dongarra, J.: NetSolve’s network enabled server-examples and applications, IEEE Computational Science & Engineering 5(3), 57–67

    Google Scholar 

  2. Cong, N., A parallel DIRK method for stiff-initial value problems, J. Comp. Appl. Math., 54 (1994), 121–127.

    Article  MATH  Google Scholar 

  3. Geist, A., et al.: PVM-Parallel Virtual Machine, a users’ guide and tutorial for networked parallel computing, MIT Press, 1994.

    Google Scholar 

  4. Hairer E. and Wanner G., Solving ordinary differential equations II. Stiff and differential-algebraic problems, Springer-Verlag, 1991.

    Google Scholar 

  5. Houwen, P.J., Parallel step-by-step methods, Appl. Num. Math. 11 (1993), 68–81.

    Google Scholar 

  6. A. Iserles and S.P. Nørsett, On the theory of parallel Runge-Kutta methods, IMA J. Numer. Anal. 10, 1990, 463–488.

    Article  MathSciNet  MATH  Google Scholar 

  7. Pawletta, S. et al.: Distributed and Parallel Application Toolbox for use with Mat-lab, http://anson.ucdavis.edu/~bsmoyers/parallel.htm (1997)

  8. Petcu, D.: On the use of multiprocessor systems for initial value problems, PPAM’99, eds. R. Wyrzykowski et al, PUHW Axon, Częstochova (1999), 306–317

    Google Scholar 

  9. Petcu D. and Drăgan, M.: Designing an ODE Solving Environment, LNCSE 10: SciTools 1998, eds. H.P. Langtangen et al, Springer, Berlin (2000), 319–338

    Google Scholar 

  10. Petcu, D.: Numerical solution of ODEs with Distributed Maple, LNCS 1988: NAA 2000, eds. L. Vulkov et al, Springer, Berlin (2001), 666–674.

    Google Scholar 

  11. Petcu D.: PVMaple-a distributed approach to cooperative work of Maple processes, LNCS 1908: PVMPI 2000, eds. J. Dongarra et al, Springer (2000), 216–224

    Google Scholar 

  12. Petcu D.: Solving initial value problems with parallel Maple processes, LNCS 2150: EuroPar 2001, eds. R. Sakellariou et al, Springer, Berlin (2001), 926–934.

    Google Scholar 

  13. Petcu D. and Gheorghiu, D.: PaVis-a parallel virtual environment for solving large mathematical problems, PARCO 2001, Proceedings, Napoli, Sept.’01, in print.

    Google Scholar 

  14. Shampine, L.F. and Reichelt, M.W., The Matlab ODE Suite, SIAM J. Sci. Comput. 18, No. 1 (1997), 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  15. Schreiner W., Developing a distributed system for algebraic geometry, EuroCM-Par’99, Proceedings, Civil-Comp. Press, Edinburgh (1999), 137–146

    Google Scholar 

  16. Tam, H.W., One-stage parallel methods for the numerical solution of ordinary differential equations, SIAM J. Sci. Stat. Comput. 13 (1992), no. 5, 1039–1061.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Petcu, D. (2002). Solving Large Systems of Differential Equations with PaViS. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2001. Lecture Notes in Computer Science, vol 2328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48086-2_48

Download citation

  • DOI: https://doi.org/10.1007/3-540-48086-2_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43792-5

  • Online ISBN: 978-3-540-48086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics