Skip to main content

Richer Network Dynamics of Intrinsically Non-regular Neurons Measured through Mutual Information

  • Conference paper
  • First Online:
Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence (IWANN 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2084))

Included in the following conference series:

  • 1549 Accesses

Abstract

Central Pattern Generators (CPGs) are assemblies of neurons that act cooperatively to produce regular signals to motor systems. The individual behavior of some members of the CPGs has often been Observed as highly variable spiking-bursting activity. In spite of this fact, The collective behavior of the intact CPG produces always regular rhythmic activity. In this paper we show that simple networks built out of intrinsically non-regular units can display modes of regular collective behavior not observed in networks composed of intrinsically regular neurons. Using a measure of mutual information we characterize several Patterns of activity observed by changing the coupling strength and the network topology. We show that the cooperative behavior of these neurons can display a rich variety of information transfer while maintaining the regularity of the rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Selverston, A.: What invertebrate circuits have taught us about the brain. Brain Research Bulletin 50(5-6) (1999) 439–40

    Article  Google Scholar 

  2. Selverston, A.: General principles of rhythmic motor pattern generation derived from invertebrate CPGs. Progress in Brain Research 123 (1999) 247–57

    Article  Google Scholar 

  3. Selverston, A., Elson, R., Rabinovich, M., Huerta, R., Abarbanel, H.: Basic principles for generating motor output in the stomatogastric ganglion. Ann. N.Y. Acad. Sci. 860 (1998) 35–50

    Article  Google Scholar 

  4. Hindmarsh, J. L., Rose, R. M.: A Model of Neuronal Bursting Using Tree Coupled First Order Differential Equations. Philos. Trans. Royal Soc. London. B221 (1984) 87–102

    Google Scholar 

  5. Rabinovich, M. I., Abarbanel, H. D. I., Huerta, R., Elson, R., and others. Self-regularization of chaos in neural systems: Experimental and theoretical results. IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications 44 (1997) 997–1005

    Article  MathSciNet  Google Scholar 

  6. Szucs, A., Varona, P., Volkovskii, A. R., Abarbanel, H. D. I., Rabinovich, M. I., and Selverston, A. I.: Interacting biological and electronic neurons generate realistic oscillatory rhythms. NeuroReport, 11 (2000) 563–569

    Article  Google Scholar 

  7. Bazhenov, M., Huerta, R., Rabinovich, M. I, Sejnowski, T.: Cooperative behavior of a chain of synaptically coupled chaotic neurons. Physica D116 (1998) 392–400

    Google Scholar 

  8. Shannon, C. E.: A Mathematical Theory of Communication. Bell Sys. Tech. J. 27 (1948) 379–423 623-656

    MathSciNet  MATH  Google Scholar 

  9. Cover, T. M., Thomas, J. A.: Elements of Information Theory. Wiley and Sons (1991)

    Google Scholar 

  10. Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W.: Spikes: Exploring the Neuronal Code. A Bradford Book. MIT Press Cambridge. Massachusetts, London, England (1997)

    Google Scholar 

  11. Selverston, A. I., Moulis, M.: The Crustaceam Stomatogastric System: a Model for the Study of Central Nervous Systems. Berlin; New York: Springer-Verlag. (1987)

    Google Scholar 

  12. Harris-Warrick, R. M.: Dynamic Biological Network: The Stomatogastric Nervous System. Canbridge, Mass.: MIT Press. (1992)

    Google Scholar 

  13. Strong, S. P., Koberle, R., de Ruyter van Steveninck, R., Bialek, W.: Entropy and Information in Neural Spike Train. Physical Review Letters 80 1 (1998) 197–200

    Article  Google Scholar 

  14. Eguia, M. C., Rabinovich, M. I., Abarbanel, H. D. I.: Information Transmission and Recovery in Neural Communications Channels. Phys. Rev. E 62 (2000) 7111–7122.

    Google Scholar 

  15. Abarbanel, H. D. I., Huerta, R., Rabinovich, M. I., Rulkov, N. F., Rowat, P., Selverston, A. I: Synchronized action of synaptically coupled chaotic model neurons. Neural Computation 8 (1996) 1567–1602

    Article  Google Scholar 

  16. Rabinovich, M. I., Abarbanel, H. D. I.: The Role of Chaos in Neural Systems. Neuroscience 87 1 (1998) 5–14

    Article  Google Scholar 

  17. Richardson, K. A., Imhoff, T. T., Grigg, P., Collins, J. J.: Encoding Chaos in Neural Spike Trains. Physical Review Letters 80 11 (1998) 2485–2488

    Article  Google Scholar 

  18. Huerta, R., Varona, P., Rabinovich, M. I., Abarbanel. H. D. I.: Topology selection by chaotic neurons of a pyloric central pattern generator. Biological Cybernetics 84 (2001) L1–L8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodriguez, F.B., Varona, P., Huerta, R., Rabinovich, M.I., Abarbanel, H.D.I. (2001). Richer Network Dynamics of Intrinsically Non-regular Neurons Measured through Mutual Information. In: Mira, J., Prieto, A. (eds) Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. IWANN 2001. Lecture Notes in Computer Science, vol 2084. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45720-8_58

Download citation

  • DOI: https://doi.org/10.1007/3-540-45720-8_58

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42235-8

  • Online ISBN: 978-3-540-45720-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics