Abstract
The derandomized evolution strategy (ES) with covariance matrix adaptation (CMA), is modified with the goal to speed up the algorithm in terms of needed number of generations. The idea of the modification of the algorithm is to adapt the covariance matrix in a faster way than in the original version by using a larger amount of the information contained in large populations. The original version of the CMA was designed to reliably adapt the covariance matrix in small populations and turned out to be highly efficient in this case. The modification scales up the efficiency to population sizes of up to 10n, where n ist the problem dimension. If enough processors are available, the use of large populations and thus of evaluating a large number of search points per generation is not a problem since the algorithm can be easily parallelized.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bäck, T., Hammel, U., and Schwefel, H.-P. (1997). Evolutionary computation: Comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1(1):3–17.
Hansen, N. (1998). Verallgemeinerte individuelle Schrittweitenregelung in der Evolutionsstrategie. Eine Untersuchung zur entstochastisierten, koordinatensystemunabhängigen Adaptation der Mutationsverteilung. Mensch und Buch Verlag, Berlin. ISBN 3-933346-29-0.
Hansen, N. and Ostermeier, A. (1997). Convergence properties of evolution strategies with the derandomized covariance matrix adaptation: The (μ/μI, λ)-CMA-ES. In Zimmermann, H.-J., editor, EUFIT’97, 5th Europ. Congr. on Intelligent Techniques and Soft Computing, Proceedings, pages 650–654, Aachen, Germany. Verlag Mainz.
Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9(2):159–195.
Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Sixth-Generation Computer Technology Series. John Wiley & Sons Inc., New York.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Müller, S.D., Hansen, N., Koumoutsakos, P. (2002). Increasing the Serial and the Parallel Performance of the CMA-Evolution Strategy with Large Populations. In: Guervós, J.J.M., Adamidis, P., Beyer, HG., Schwefel, HP., Fernández-Villacañas, JL. (eds) Parallel Problem Solving from Nature — PPSN VII. PPSN 2002. Lecture Notes in Computer Science, vol 2439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45712-7_41
Download citation
DOI: https://doi.org/10.1007/3-540-45712-7_41
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44139-7
Online ISBN: 978-3-540-45712-1
eBook Packages: Springer Book Archive