Abstract
The aim of this paper is to show how existential concept graphs may be introduced on the semantic level. For this the “free extension” of a power context family \( \mathbb{K} \) by a given set X of variables is constructed as a power context family “freely” enlarged by X. Then, an existential concept graph of \( \mathbb{K} \) can be appropriately defined as a concept graph of the free extension of \( \mathbb{K} \) that can be projected onto a concept graph of \( \mathbb{K} \) by some mapping induced by an interpretation of the variables of X by basic objects of \( \mathbb{K} \) . The introduced conceptual content of existential concept graphs allows a simple description of the generalization order between those graphs. All this can be generalized to existential protoconcept graphs for also including negations. In this way, the actual development of Contextual Judgment Logic disposes of (implicit) existential quantifiers as well as negations and negating inversions (cf. [Wi01a]).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. B. Brandom: Making it explicit. Reasoning, representing, and discursive commitment. Havard University Press, Cambridge 1994.
R. W. Burch: A Peircean reduction thesis. Texas Tech University Press, Lubbock 1991.
F. Dau: Negations in simple concept graphs. In: B. Ganter, G. W. Mineau (eds.): Conceptual structures: logical, linguistic, and computational issues. LNAI 1867. Springer, Heidelberg 2000, 263–276.
F. Dau: Concept graphs and predicate logic. In: H. Delugach, G. Stumme (eds.): Conceptual structures: broadening the base. LNAI 2120. Springer, Heidelberg 2001, 72–86.
F. Dau, R. Wille: On the modal understanding of triadic contexts. In: R. Decker, W. Gaul (eds.): Classification and information processing at the turn of the millennium. Spinger, Heidelberg 2000, 83–94.
J. Klinger: Semiconcept graphs: syntax and semantics. Diplomarbeit. FB Mathematik, TU Darmstadt 2001.
B. Ganter, R. Wille: Formal Concept Analysis: mathematical foundations. Springer, Heidelberg 1999; German version: Springer, Heidelberg 1996.
B. Groh, R. Wille: Lattices of triadic concept graphs. In: B. Ganter, G. W. Mineau (eds.): Conceptual structures: logical, linguistic and computational issues. LNAI 1867. Springer, Heidelberg 2000, 332–341.
M. Nicholson: The pocket Aussie fact book. Penguin Books Australia, Ringwood 1999.
S. Prediger: Kontextuelle Urteilslogik mit Begriffsgraphen. Ein Beitrag zur Restrukturierung der mathematischen Logik. Dissertation, TU Darmstadt 1998. Shaker, Aachen 1998.
S. Prediger, R. Wille: The lattice of concept graphs of a relationally scaled context. In: W. Tepfenhart, W. Cyre (eds.): Conceptual structures: standards and practices. LNAI 1640. Springer, Heidelberg 1999, 401–414.
J. F. Sowa: Conceptual structures: information processing in mind and machine. Adison-Wesley, Reading 1984.
J. Tappe: Simple concept graphs with universal quantifiers. In: G. Stumme (ed.): Working with Conceptual Structures. Contributions to ICCS 2000. Shaker, Aachen 2000, 95–108.
R. Wille: Restructuring lattice theory: an approach based on hierarchies of concepts. In: I. Rival (ed.): Ordered sets. Reidel, Dordrecht-Boston 1982, 445–470.
R. Wille: Restructuring mathematical logic: an approach based on Peirce’s pragmatism. In: A. Ursini, P. Agliano (eds.): Logic and Algebra. Marcel Dekker, New York 1996, 267–281.
R. Wille: Conceptual Graphs and Formal Concept Analysis. In: D. Lukose, H. Delugach, M. Keeler, L. Searle, J. F. Sowa (eds.): Conceptual structures: fulfilling Peirce’s dream. LNAI 1257. Springer, Heidelberg 1997, 290–303.
R. Wille: Triadic concept graphs. In: M. L. Mugnier, M. Chein (eds.): Conceptual structures: theory, tools and applications. LNAI 1453. Springer, Heidelberg 1998, 194–208.
R. Wille: Boolean Concept Logic. In: B. Ganter, G. W. Mineau (eds.): Conceptual structures: logical, linguistic, and computational issues. LNAI 1867. Springer, Heidelberg 2000, 317–331.
R. Wille: Contextual Logic summary. In: G. Stumme (ed.): Working with Conceptual Structures. Contributions to ICCS 2000. Shaker, Aachen 2000, 265–276.
R. Wille: Lecture notes on contextual logic of relations. FB4-Preprint, TU Darmstadt 2000.
R. Wille: Boolean Judgment Logic. In: H. Delugach, G. Stumme (eds.): Conceptual structures: broadening the base. LNAI 2120. Springer, Heidelberg 2001, 115–128.
R. Wille: The contextual-logic structure of distinctive judgments. FB4-Preprint Nr. 2160, TU Darmstadt 2001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wille, R. (2002). Existential Concept Graphs of Power Context Families. In: Priss, U., Corbett, D., Angelova, G. (eds) Conceptual Structures: Integration and Interfaces. ICCS 2002. Lecture Notes in Computer Science(), vol 2393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45483-7_29
Download citation
DOI: https://doi.org/10.1007/3-540-45483-7_29
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43901-1
Online ISBN: 978-3-540-45483-0
eBook Packages: Springer Book Archive