Skip to main content

Remarks on Geometric Theorem Proving

  • Conference paper
  • First Online:
Automated Deduction in Geometry (ADG 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2061))

Included in the following conference series:

  • 386 Accesses

Abstract

The mathematical literature related to automatic methods for proving theorems in Euclidean geometry is immense. However, it is the opinion of the authors that the theory behind this topic would profit from more algebraic tools and more methods from commutative algebra. The scope of this paper is to begin to fill such a gap. In particular we bring to the forefront important notions such as computing field, optimal hypothesis ideal, and good set of conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Buchberger, On Finding a Vector Space Basis of the Residue Class Ring Modulo a Zero-dimensional Polynomial Ideal (in German), PhD Thesis, Universität Innsbruck, Innsbruck (1965).

    Google Scholar 

  2. B. Buchberger, Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory, Chapter 6 in N.K. Bose ed., Multidimensional Systems Theory, pp. 184–232, D. Reidel Publ. Comp., Dordrecht (1985).

    Google Scholar 

  3. S.-C. Chou, Mechanical Geometry Theorem Proving (Mathematics and Its Applications 41), D. Reidel Publ. Comp., Dordrecht (1988).

    Google Scholar 

  4. A. Capani, G. Niesi, L. Robbiano, CoCoA, a System for Doing Computations in Commutative Algebra. Version 4.0 is available at http://cocoa.dima.unige.it.

  5. H. Gelernter, J. R. Hansen, D. W. Loveland, Empirical Exploration of the Geometry Theorem Proving Machine, in A. Feigenbaum, A., J. Feldman eds., Computer and Thought, pp. 153–163, McGraw-Hill, New York (1963).

    Google Scholar 

  6. F. De Giovanni, T. Landolfi, Le Dimostrazioni di Teoremi fondate sull’uso del Calcolatori, Bollettino U.M.I., La matematica nella Società e nella Cultura (8) 2-A: 69–81 (1999).

    Google Scholar 

  7. D. Kapur, Using Gröbner Bases to Reason about Geometry Problems, J. Symb. Comp. 2: 399–408 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Kapur, A Refutational Approach to Geometry Theorem Proving, Artificial Intelligence 37: 61–93 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Kreuzer, L. Robbiano, Computational Commutative Algebra 1, Springer-Verlag, Berlin Heidelberg (2000).

    MATH  Google Scholar 

  10. B. Kutzler, S. Stifter, On the Application of Buchberger’s Algorithm to Automated Geometry Theorem Proving, J. Symb. Comput. 2: 389–397 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Recio, H. Sterk, M. Pilar Vélez, Automatic Geometry Theorem Proving, in A. Cohen, H. Cuypers, H. Sterk eds., Some Tapas of Computer Algebra (Algorithms and Computation in Mathematics 4), pp. 276–296, Springer-Verlag, Berlin Heidelberg (1999).

    Google Scholar 

  12. T. Recio, M. Pilar Vélez, Automatic Discovery of Theorems in Elementary Geometry, J. Automat. Reason. 23: 63–82 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Richter-Gebert, Realization Spaces of Polytopes (Lecture Notes in Mathematics 1643), Springer-Verlag, Berlin Heidelberg (1996).

    Google Scholar 

  14. D. Wang, Gröbner Bases Applied to Geometric Theorem Proving and Discovering, in B. Buchberger and F. Winkler eds., Gröbner Bases and Applications (London Mathematical Society Lecture Notes Series 251), pp. 281–301, Cambridge University Press, Cambridge (1998).

    Google Scholar 

  15. W.-T. Wu, On the Decision Problem and the Mechanization of Theorem Proving in Elementary Geometry, Scientia Sinica 21: 150–172 (1978).

    Google Scholar 

  16. W.-T. Wu, Toward Mechanization of Geometry-Some Comments on Hilbert’s “Grundlagen der Geometrie”, Acta Math. Scientia 2: 125–138 (1982).

    MATH  Google Scholar 

  17. W.-T. Wu, Basic Principles of Mechanical Theorem Proving in Elementary Geometries, J. Syst. Sci. Math. Sci. 4: 207–235 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bazzotti, L., Dalzotto, G., Robbiano, L. (2001). Remarks on Geometric Theorem Proving. In: Richter-Gebert, J., Wang, D. (eds) Automated Deduction in Geometry. ADG 2000. Lecture Notes in Computer Science(), vol 2061. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45410-1_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45410-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42598-4

  • Online ISBN: 978-3-540-45410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics