Abstract
The mathematical literature related to automatic methods for proving theorems in Euclidean geometry is immense. However, it is the opinion of the authors that the theory behind this topic would profit from more algebraic tools and more methods from commutative algebra. The scope of this paper is to begin to fill such a gap. In particular we bring to the forefront important notions such as computing field, optimal hypothesis ideal, and good set of conditions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
B. Buchberger, On Finding a Vector Space Basis of the Residue Class Ring Modulo a Zero-dimensional Polynomial Ideal (in German), PhD Thesis, Universität Innsbruck, Innsbruck (1965).
B. Buchberger, Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory, Chapter 6 in N.K. Bose ed., Multidimensional Systems Theory, pp. 184–232, D. Reidel Publ. Comp., Dordrecht (1985).
S.-C. Chou, Mechanical Geometry Theorem Proving (Mathematics and Its Applications 41), D. Reidel Publ. Comp., Dordrecht (1988).
A. Capani, G. Niesi, L. Robbiano, CoCoA, a System for Doing Computations in Commutative Algebra. Version 4.0 is available at http://cocoa.dima.unige.it.
H. Gelernter, J. R. Hansen, D. W. Loveland, Empirical Exploration of the Geometry Theorem Proving Machine, in A. Feigenbaum, A., J. Feldman eds., Computer and Thought, pp. 153–163, McGraw-Hill, New York (1963).
F. De Giovanni, T. Landolfi, Le Dimostrazioni di Teoremi fondate sull’uso del Calcolatori, Bollettino U.M.I., La matematica nella Società e nella Cultura (8) 2-A: 69–81 (1999).
D. Kapur, Using Gröbner Bases to Reason about Geometry Problems, J. Symb. Comp. 2: 399–408 (1986).
D. Kapur, A Refutational Approach to Geometry Theorem Proving, Artificial Intelligence 37: 61–93 (1988).
M. Kreuzer, L. Robbiano, Computational Commutative Algebra 1, Springer-Verlag, Berlin Heidelberg (2000).
B. Kutzler, S. Stifter, On the Application of Buchberger’s Algorithm to Automated Geometry Theorem Proving, J. Symb. Comput. 2: 389–397 (1986).
T. Recio, H. Sterk, M. Pilar Vélez, Automatic Geometry Theorem Proving, in A. Cohen, H. Cuypers, H. Sterk eds., Some Tapas of Computer Algebra (Algorithms and Computation in Mathematics 4), pp. 276–296, Springer-Verlag, Berlin Heidelberg (1999).
T. Recio, M. Pilar Vélez, Automatic Discovery of Theorems in Elementary Geometry, J. Automat. Reason. 23: 63–82 (1999).
J. Richter-Gebert, Realization Spaces of Polytopes (Lecture Notes in Mathematics 1643), Springer-Verlag, Berlin Heidelberg (1996).
D. Wang, Gröbner Bases Applied to Geometric Theorem Proving and Discovering, in B. Buchberger and F. Winkler eds., Gröbner Bases and Applications (London Mathematical Society Lecture Notes Series 251), pp. 281–301, Cambridge University Press, Cambridge (1998).
W.-T. Wu, On the Decision Problem and the Mechanization of Theorem Proving in Elementary Geometry, Scientia Sinica 21: 150–172 (1978).
W.-T. Wu, Toward Mechanization of Geometry-Some Comments on Hilbert’s “Grundlagen der Geometrie”, Acta Math. Scientia 2: 125–138 (1982).
W.-T. Wu, Basic Principles of Mechanical Theorem Proving in Elementary Geometries, J. Syst. Sci. Math. Sci. 4: 207–235 (1984).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bazzotti, L., Dalzotto, G., Robbiano, L. (2001). Remarks on Geometric Theorem Proving. In: Richter-Gebert, J., Wang, D. (eds) Automated Deduction in Geometry. ADG 2000. Lecture Notes in Computer Science(), vol 2061. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45410-1_7
Download citation
DOI: https://doi.org/10.1007/3-540-45410-1_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42598-4
Online ISBN: 978-3-540-45410-6
eBook Packages: Springer Book Archive