Abstract
This paper presents a method for cancer type classification based on microarray-monitored data. The method is based on artificial immune system(AIS), which utilizes immunological recognition for classification. The system evolutionarily selects important genes; optimize their weights to derive classification rules. This system was applied to gene expression data of acute leukemia patients to classify their cancer class. The primary result found few classification rules which correctly classified all the test samples and gave some interesting implications for feature selection principles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Ben-Dor, N. Friedman, Z. Yakini, Class discovery in gene expression data, Proc. of the 5th Annual International Conference on Computational Molecular Biology, 31–38, 2001.
D. Dasgupta. Artificial Immune Systems and Their Applications. Springer, 1999.
D. Goldberg, B. Korb and K. Deb, Messy Genetic Algorithms: Motivation, Analysis and First Results, Complex Systems, 3:493–530, 1989
Donna K. Slonim, Pablo Tamayo, Jill P. Mesirov, Todd R. Golub, Eric S. Lander, Class Prediction and Discovery Using Gene Expression Data, Proc. of the 4th Annual International Conference on Computational Molecular Biology(RECOMB), 263–272, 2000.
H. Liu, J. Li, L. Wong, A Comparative Study on Feature Selection and Classification Methods Using Gene Expression Profiles and Proteomic Patterns, in Proceeding of Genome Informatics Workshop, 2002
I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene Selection for Cancer Classification using Support Vector Machines, Machine Learning Vol. 46 Issue 1–3, pp. 389–422, 2002
K.B. Hwang, D.Y. Cho, S.W. Wook Park, S.D. Kim, and B.Y. Zhang, Applying Machine Learning Techniques to Analysis of Gene Expression Data: Cancer Diagnosis, in Proceedings of the First Conference on Critical Assessment of Microarray Data Analysis, CAMDA2000.
L. Li, C. R. Weinberg, T. A. Darden, L. G. Pedersen, Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method, Bioinformatics, Vol. 17, No. 12, pp. 1131–1142, 2001
M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Science, 85:14863–14868, 1998.
P. Baldi and A. Long, A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes, Bioinformatics, 17:509–519, 2001.
P.J. Park, M. Pagano, and M. Bonetti, A nonparametric scoring algorithm for identifying informative genes from microarry data, PSB2001, 6:52–63, 2001.
R. Kohavi and G. H. John, Wrappers for Feature Subset Selection, Artificial Intelligence, vol.97, 1–2, pp273–324, 1997
T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 2001
T.R. Golub, D.K. Slonim, P. Tamayo, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531–537, 1999.
U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack, and A. Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon cancer tissues probed by oligonucleotide arrays. Cell Biology, 96:6745–6750, 1999.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ando, S., Iba, H. (2003). Artificial Immune System for Classification of Cancer. In: Cagnoni, S., et al. Applications of Evolutionary Computing. EvoWorkshops 2003. Lecture Notes in Computer Science, vol 2611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36605-9_1
Download citation
DOI: https://doi.org/10.1007/3-540-36605-9_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00976-4
Online ISBN: 978-3-540-36605-8
eBook Packages: Springer Book Archive