Reference
Bachem, A. & R. Kannan, Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. on Computing 8, 499–507 (1979).
Chou, T. J. & G. E. Collins, Algorithms for the solution of systems of Linear Diophantine equations. SIAM J. on Computing 11, 687–708, (1982).
Iliopoulos, C. S., Worst-case complexity bounds on algorithms for computing the canonical structure of finite abelian groups and the Hermite and Smith normal forms of an integer matrix. SIAM J. on Computing. Forthcoming.
Lüneburg, H., On a little but useful algorithm. In: Algebraic AL=gorithms and Error-Correcting Codes. Editor J. Calmet. Springer LNCS 229, 296–301 (1986).
Lüneburg, H., On the Rational Normal Form of Endomorphisms. A Primer to Constructive Algebra. Mannheim, Bibl. Institut 1987.
Lüneburg, H., On the Computation of the Smith Normal Form. Suppl. to ‘Rendiconti del Circolo Matematico di Palermo'. In print.
Smith, H. J. S., On systems of linear indeterminate equations and congruences. Phil. Trans. 151, 293–326 (1861). Coll. Math. Papers, vol. 1, 367–409.
Editor information
Rights and permissions
Copyright information
© 1988 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lüneburg, H. (1988). On the computation of the Smith normat form. In: Janßen, R. (eds) Trends in Computer Algebra. Lecture Notes in Computer Science, vol 296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-18928-9_10
Download citation
DOI: https://doi.org/10.1007/3-540-18928-9_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-18928-2
Online ISBN: 978-3-540-38850-0
eBook Packages: Springer Book Archive