Skip to main content

On the computation of the Smith normat form

  • Conference paper
  • First Online:
Trends in Computer Algebra

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 296))

  • 204 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Reference

  1. Bachem, A. & R. Kannan, Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. on Computing 8, 499–507 (1979).

    Article  Google Scholar 

  2. Chou, T. J. & G. E. Collins, Algorithms for the solution of systems of Linear Diophantine equations. SIAM J. on Computing 11, 687–708, (1982).

    Article  Google Scholar 

  3. Iliopoulos, C. S., Worst-case complexity bounds on algorithms for computing the canonical structure of finite abelian groups and the Hermite and Smith normal forms of an integer matrix. SIAM J. on Computing. Forthcoming.

    Google Scholar 

  4. Lüneburg, H., On a little but useful algorithm. In: Algebraic AL=gorithms and Error-Correcting Codes. Editor J. Calmet. Springer LNCS 229, 296–301 (1986).

    Google Scholar 

  5. Lüneburg, H., On the Rational Normal Form of Endomorphisms. A Primer to Constructive Algebra. Mannheim, Bibl. Institut 1987.

    Google Scholar 

  6. Lüneburg, H., On the Computation of the Smith Normal Form. Suppl. to ‘Rendiconti del Circolo Matematico di Palermo'. In print.

    Google Scholar 

  7. Smith, H. J. S., On systems of linear indeterminate equations and congruences. Phil. Trans. 151, 293–326 (1861). Coll. Math. Papers, vol. 1, 367–409.

    Google Scholar 

Download references

Authors

Editor information

Rainer Janßen

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lüneburg, H. (1988). On the computation of the Smith normat form. In: Janßen, R. (eds) Trends in Computer Algebra. Lecture Notes in Computer Science, vol 296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-18928-9_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-18928-9_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18928-2

  • Online ISBN: 978-3-540-38850-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics