Abstract
This paper presents a classification technique using possibility theory, namely the possibilistic option decision trees (PODT) which offers a more flexible building procedure by selecting more than one attribute in each decision node. Then, a classification method, using the PODT, to determine the class value of instances characterized by uncertain/missing attributes is proposed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben Amor, N., Benferhat, S., Elouedi, Z.: Qualitative classification and evaluation in possibilistic decision trees. In: FUZZ-IEEE 2004 (2004)
Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Occam’s razor. Information Processing Letters 24, 377–380 (1987)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth & Brooks, Monterey (1984)
Buntine, W.: Learning classfication trees. Statistics and Computing, 63–73 (1990)
Dubois, D., Prade, H.: Possibility theory: An approach to computerized processing of uncertainty. Plenum Press, New York (1988)
Hüllermeier, E.: Possibilistic induction in decision-tree learning. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, p. 173. Springer, Heidelberg (2002)
Kohavi, R., Kunz, C.: Option decision trees with majority votes. In: ICML 1997 (1997)
Murphy, P.M., Aha, D.W.: UCI repository of machine learning databases (1996)
Murphy, P.M., Pazzani, M.J.: Exploring the decision forest: An emperical investigation of Occam’s Razor in decision tree induction. In: JAIR, pp. 257-275 (1994)
Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)
Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993)
Weiss, S.M., Kulikovski, C.A.: Computer systems that learn. Morgan Kaufmann, San Mateo (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jenhani, I., Elouedi, Z., Amor, N.B., Mellouli, K. (2005). Qualitative Inference in Possibilistic Option Decision Trees. In: Godo, L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2005. Lecture Notes in Computer Science(), vol 3571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11518655_79
Download citation
DOI: https://doi.org/10.1007/11518655_79
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27326-4
Online ISBN: 978-3-540-31888-0
eBook Packages: Computer ScienceComputer Science (R0)