Skip to main content

Qualitative Inference in Possibilistic Option Decision Trees

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3571))

Abstract

This paper presents a classification technique using possibility theory, namely the possibilistic option decision trees (PODT) which offers a more flexible building procedure by selecting more than one attribute in each decision node. Then, a classification method, using the PODT, to determine the class value of instances characterized by uncertain/missing attributes is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben Amor, N., Benferhat, S., Elouedi, Z.: Qualitative classification and evaluation in possibilistic decision trees. In: FUZZ-IEEE 2004 (2004)

    Google Scholar 

  2. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Occam’s razor. Information Processing Letters 24, 377–380 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth & Brooks, Monterey (1984)

    MATH  Google Scholar 

  4. Buntine, W.: Learning classfication trees. Statistics and Computing, 63–73 (1990)

    Google Scholar 

  5. Dubois, D., Prade, H.: Possibility theory: An approach to computerized processing of uncertainty. Plenum Press, New York (1988)

    MATH  Google Scholar 

  6. Hüllermeier, E.: Possibilistic induction in decision-tree learning. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, p. 173. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Kohavi, R., Kunz, C.: Option decision trees with majority votes. In: ICML 1997 (1997)

    Google Scholar 

  8. Murphy, P.M., Aha, D.W.: UCI repository of machine learning databases (1996)

    Google Scholar 

  9. Murphy, P.M., Pazzani, M.J.: Exploring the decision forest: An emperical investigation of Occam’s Razor in decision tree induction. In: JAIR, pp. 257-275 (1994)

    Google Scholar 

  10. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  11. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  12. Weiss, S.M., Kulikovski, C.A.: Computer systems that learn. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jenhani, I., Elouedi, Z., Amor, N.B., Mellouli, K. (2005). Qualitative Inference in Possibilistic Option Decision Trees. In: Godo, L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2005. Lecture Notes in Computer Science(), vol 3571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11518655_79

Download citation

  • DOI: https://doi.org/10.1007/11518655_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27326-4

  • Online ISBN: 978-3-540-31888-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics