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Abstract
Despite several decades of research, the problem of formal
verification of infinite-state systems has resisted effective au-
tomation. We describe a system — Ivy — for interactively
verifying safety of infinite-state systems. Ivy’s key principle
is that whenever verification fails, Ivy graphically displays
a concrete counterexample to induction. The user then in-
teractively guides generalization from this counterexample.
This process continues until an inductive invariant is found.
Ivy searches for universally quantified invariants, and uses
a restricted modeling language. This ensures that all verifi-
cation conditions can be checked algorithmically. All user
interactions are performed using graphical models, easing the
user’s task. We describe our initial experience with verifying
several distributed protocols.

Categories and Subject Descriptors D.2.4 [Software/Pro-
gram Verification]: Formal methods; F.3.1 [Specifying and
Verifying and Reasoning about Programs]: Invariants

Keywords safety verification, invariant inference, coun-
terexamples to induction, distributed systems

1. Introduction
Despite several decades of research, the problem of formal
verification of systems with unboundedly many states has
resisted effective automation. Although many techniques
have been proposed, in practice they are either too narrow in

scope or they make use of fragile heuristics that are highly
sensitive to the encoding of the problem. In fact, most efforts
towards verifying real-world systems use relatively little
proof automation [8, 18, 20]. At best, they require a human
user to annotate the system with an inductive invariant and
use an automated decision procedure to check the resulting
verification conditions.

Our hypothesis is that automated methods are difficult to
apply in practice not primarily because they are unreliable,
but rather because they are opaque. That is, they fail in ways
that are difficult for a human user to understand and to remedy.
A practical heuristic method, when it fails, should fail visibly,
in the sense that the root cause of the failure is observable
to the user, who can then provide an appropriate remedy. If
this is true, the user can benefit from automated heuristics in
the construction of the proof but does not reach a dead end in
case heuristics fail.

Consider the problem of proving a safety property of a
transition system. Most methods for this in one way or an-
other construct and prove an inductive invariant. One way in
which this process can fail is by failing to produce an induc-
tive invariant. Typically, the root cause of this is failure to
produce a useful generalization, resulting in an over-widening
or divergence in an infinite sequence of abstraction refine-
ments. Discovering this root cause in the complex chain of
reasoning produced by the algorithm is often extremely diffi-
cult. To make such failures visible, we propose an interactive
methodology that involves the user in the generalization pro-
cess. We graphically visualize counterexamples to induction,
and let the user guide the generalization with the help of
automated procedures.

Another way the proof might fail is by failing to prove
that the invariant is in fact inductive (for example, because of
incompleteness of the prover). This can happen even when
the invariant is provided manually. A typical root cause for
this failure is that matching heuristics fail to produce a needed
instantiation of a universal quantifier. Such failures of prover
heuristics can be quite challenging for users to diagnose



and correct (and in fact the instability of heuristic matching
posed significant difficulties for the proof effort of [8]). To
eliminate this sort of invisible failure, we focus on universally
quantified invariants and propose a restricted specification
language that ensures that all verification conditions can be
algorithmically checked.

We test these ideas by implementing them in a verification
tool and applying it to a variety of infinite-state or parame-
terized systems. Although our correctness proofs were not
obtained in a fully automated way, we find that automated
generalization heuristics are still useful when applied with
human guidance. Moreover, we find that the restrictions im-
posed by our specification language and by the use of univer-
sally quantified invariants are not an impediment to proving
safety of parameterized distributed protocols.

Main Results The contributions of this paper are:
• A new methodology for safety verification of infinite-state

systems via an interactive search for universally quanti-
fied inductive invariants. Our methodology combines user
guidance with automated reasoning. To ensure decidabil-
ity of the automated reasoning, the methodology requires
that checking inductiveness of a universal invariant is de-
cidable; and that checking if a universal property holds
after a bounded number of transitions is decidable.

• A realization of our methodology using a new modeling
language called RML (relational modeling language).
RML is inspired by Alloy [16]. It represents program
states using sets of first order relations. RML also allows
functions to be used in a restricted form. Updates to
relations and functions are restricted to be quantifier
free. Non-deterministic statements in the style of Boogie
and Dafny are supported. RML is designed to guarantee
that verification conditions for every loop-free program
fragment are expressible in an extension of the Bernays-
Schönfinkel-Ramsey fragment of first-order logic, also
known as EPR [26], for which checking satisfiability is
decidable.

• A tool, called Ivy, that implements our new methodology
for unbounded verification as a part of a verification
framework. Ivy also allows model debugging via bounded
verification. Using Ivy, we provide an initial evaluation of
our methodology on some interesting distributed protocols
modeled as RML programs. Ivy and the protocol models
reported in this paper are publicly available [15].

2. Overview: Interactive Verification with Ivy
This section provides an informal overview of the verification
procedure in Ivy.

Ivy’s design philosophy Ivy is inspired by proof assistants
such as Isabelle/HOL [23] and Coq [11] which engage the
user in the verification process. Ivy also builds on success
of tools such as Z3 [4] which can be very useful for bug
finding, verification, and static analysis, and on automated

invariant inference techniques such as [17]. Ivy aims to
balance between the predictability and visibility of proof
assistants, and the automation of decision procedures and
automated invariant inference techniques.

Compared to fully automated techniques, Ivy adopts a
different philosophy which permits visible failures at the cost
of more manual work from the users. Compared to proof
assistants, Ivy provides the user with automated assistance,
solving well-defined decidable problems. To obtain this, we
use a restricted modeling language called RML. RML is
restricted in a way which guarantees that the tasks performed
automatically solve decidable problems. For example, RML
does not allow arithmetic operations. However, RML is
Turing-complete, and can be used to model many interesting
infinite-state systems.

For systems modeled by RML programs, Ivy provides
a verification framework which allows model debugging
via bounded verification, as well as unbounded verification
using our new methodology for interactively constructing
universally quantified inductive invariants.

2.1 A Running Example: Leader Election
Figure 1 shows an RML program that models a standard
protocol for leader election in a ring [3]. This example is used
as a running example in this section. The protocol assumes a
ring of unbounded size. Every node has a unique ID with a
total order on the IDs. Thus, electing a leader can be done by
a decentralized extrema-finding protocol. The protocol works
by sending messages in the ring in one direction. Every node
sends its own ID to its neighbor. A node forwards messages
that contain an ID higher than its own ID. When a node
receives a message with its own ID, it declares itself as a
leader.

The RML program uses sorted variables, relations and
a single function symbol to model the state of the protocol
which evolves over time. Ivy allows only “stratified” function
symbols (e.g., if there is a function mapping sort s1 to sort s2,
there cannot be a function mapping s2 to s1). In the leader
election example, IDs and nodes are modeled by sorts id
and node, respectively. The function id maps each node to
its ID. Since IDs are never mapped back to nodes by any
function, id obeys the stratification requirement. The function
id is uninterpreted, but the axiom unique ids (line 11), which
appears in Figure 2, constrains it to be injective (preventing
two different nodes from having the same ID).

A binary relation le encodes a total order on IDs. The
ring topology is represented by a ternary relation btw on
nodes with suitable axiomatization that appears in Figure 2.
btw(x, y, z) holds for distinct elements x, y, z, if the shortest
path in the ring from x to z goes through y (i.e., y is between
x and z in the ring). le and btw are modeled as uninterpreted
relations which are axiomatized in a sound and complete
way using the universally quantified axioms le total order
and ring topology (lines 12 and 13), respectively. The unary
relation leader holds for nodes which are identified as leaders.



1 sort node
2 sort id
3 function id : node→ id
4 relation le : id,id
5 relation btw : node, node, node
6 relation leader: node
7 relation pnd: id, node
8 variable n : node
9 variable m : node

10 variable i : id
11 axiom unique ids
12 axiom le total order
13 axiom ring topology
14 assume ∀x.¬leader(x)
15 assume ∀x, y.¬pnd(x, y)
16 while ∗ do {
17 assert ∀n1, n2.¬(leader(n1)∧leader(n2)∧n1 6= n2)
18 {
19 // send
20 n := ∗
21 m := ∗
22 assume next(n, m)
23 pnd.insert(id(n), m)
24 } | {
25 // receive
26 i := ∗
27 n := ∗
28 assume pnd(i, n)
29 pnd.remove(i, n)
30 if id(n) = i then {
31 leader.insert(n)
32 } else {
33 if le(id(n), i) then {
34 m := ∗
35 assume next(n, m)
36 pnd.insert(i, m)
37 }
38 }
39 }
40 }

Figure 1. An RML model of the leader election protocol.
unique ids, le total order, ring topology, and next(a, b) de-
note universally quantified formulas given in Figure 2.

unique ids = ∀n1, n2. n1 6= n2 → id(n1) 6= id(n2)
le total order = ∀x. le(x, x) ∧

∀x, y, z. le(x, y) ∧ le(y, z)→ le(x, z) ∧
∀x, y. le(x, y) ∧ le(y, x)→ x = y ∧
∀x, y. le(x, y) ∨ le(y, x)

ring topology = ∀x, y, z. btw(x, y, z)→ btw(y, z, x) ∧
∀w, x, y, z. btw(w, x, y) ∧ btw(w, y, z)→ btw(w, x, z) ∧
∀w, x, y. btw(w, x, y)→ ¬btw(w, y, x) ∧
∀w, x, y.distinct(w, x, y)→ btw(w, x, y) ∨ btw(w, y, x)

next(a, b) = ∀x.x 6= a ∧ x 6= b→ btw(a, b, x)

Figure 2. Universally quantified formulas used in Figure 1.
unique ids expresses that no two nodes can have the same
ID. le total order expresses that le is a reflexive total order.
ring topology expresses that btw represents a ring. next(a, b)
expresses the fact that b is the immediate successor of a in
the ring defined by btw.

Figure 3. Flowchart of bounded verification.

The binary relation pnd between nodes and IDs denotes
pending messages. The binary “macro” next(a, b) denotes the
fact that node b is the immediate neighbor of node a in the
ring. It is expressed by means using the btw relation by means
of a universally quantified formula enforcing minimality.
next(a, b) expresses the fact that b is the immediate neighbor
of a in the ring.

In the initial state, no node is identified as a leader, and
there are no pending messages. This is expressed by lines 14
and 15 respectively.

The core of the RML program is a non-deterministic
loop. The loop starts by asserting that there is at most one
leader (line 17). This assertion defines the safety property
to verify. The loop body then contains a non-deterministic
choice between two operations. The send operation (lines 19
to 23) sends a node’s ID to its successor by inserting into the
pnd relation. The receive operation (lines 25 to 38) handles
an incoming message: it compares the ID in the message to
the ID of the receiving node, and updates the leader and pnd
relations according to the protocol.

Graphical visualization of states Ivy displays states of the
protocol as graphs where the vertices represent elements,
and edges represent relations and functions. As an example
consider the state depicted in Figure 7 (a1). This state has
two nodes and two IDs, represented by vertices of different
shapes. Unary relations are displayed using vertex labels.
For example, in Figure 7 (a1), node1 is labeled leader, and
node2 is labeled ¬leader, denoting that the leader relation
contains only node1. Binary relations such as le and pnd
are displayed using directed edges. Higher-arity relations are
displayed by means of their projections or derived relations.
For example, the ternary relation btw is displayed by the
derived binary relation next which captures a single ring edge.
Functions such as id are displayed similarly to relations. The
state depicted in Figure 7 (a1) contains two nodes, node1 and
node2, such that the ID of node1 is lower (by le) than the
ID of node2, the ID of node2 is pending at node2, and only
node1 is contained in the leader relation. This state is clearly
not reachable in the protocol, and the reason for displaying it
will be explained in Section 2.3.

2.2 Bounded Verification
We aim for Ivy to be used by protocol designers to debug
and verify their protocols. The first phase of the verification
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Figure 4. An error trace found by BMC for the leader protocol, when omitting the fact that node IDs are unique. (a) an initial
state; (b) node1 sent a message to node2; (c) node2 sent a message to node1; (d) node1 processed a pending message and became
leader; (e) node2 processed a pending message and became leader, there are now two leaders and the safety property is violated.

is debugging the protocol symbolically. Bounded model
checking tools such as Alloy [16] can be very effective here.
However, the restrictions on RML permit Ivy to implement
a more powerful bounded verification procedure which does
not a priori bound the size of the input configuration. Instead,
Ivy tests if any k transitions (loop iterations) can lead to
an assertion violation. In our experience this phase is very
effective for bug finding since often the protocol and/or the
desired properties are wrong.

For example, our initial modeling of the leader election
protocol missed the unique ids axiom (line 11). Bounded
verification with a bound of 4 transitions resulted in the error
trace depicted in Figure 3. In this trace, node1 identifies itself
as a leader when it receives the message with the ID of node2
since they have the same ID (id1), and similarly for node2,
leading to violation of the assertion. After adding the missing
axiom, we ran Ivy with a bound of 10 transitions to debug the
model, and did not get a counterexample trace. Notice again
that Ivy does not restrict the size of the ring, only the number
of loop iterations.

In our experience, protocols can be verified for about 10
transitions in a few minutes. Once bounded verification does
not find more bugs, the user can prove unbounded correctness
by searching for an inductive invariant.

2.3 Interactive Search for Universally Quantified
Inductive Invariants

The second phase of the verification is to find a universally
quantified inductive invariant that proves that the system is
correct for any number of transitions. This phase requires
more user effort but enables ultimate safety verification.

We say that an invariant I is inductive for an RML program
if: (i) All initial states of the program satisfy I (initiation).
(ii) Every state satisfying I also satisfies the desired safety
properties (safety). (iii) I is closed under the transitions of
the program, i.e., executing the loop body from any arbitrary
program state satisfying I results in a new program state
which also satisfies I (consecution).

If the user has a universally quantified inductive invariant
in mind, Ivy can automatically check if it is indeed an
inductive invariant. Due to the restrictions of RML, this

Figure 5. Flowchart of the interactive search for an induc-
tive invariant.

check is guaranteed to terminate with either a proof showing
that the invariant is inductive or a finite counterexample
which can be depicted graphically and presented to the user.
We refer to such a counterexample as a counterexample to
induction (CTI). A CTI does not necessarily imply that the
safety property is violated — only that I is not an inductive
invariant. Coming up with inductive invariants for infinite-
state systems is very difficult. Therefore, Ivy supports an
interactive procedure for gradually obtaining an inductive
invariant or deciding that the RML program or the safety
property need to be revised.

The search for an inductive invariant starts with a (possibly
empty) set of universally quantified conjectures, and advances
based on CTIs according to the procedure described in
Figure 5. When a CTI is found it is displayed graphically,
and the user has 3 options: 1) The user understands that
there is a bug in the model or safety property, in which
case the user revises the RML program and starts over in
Figure 3. Note that in this case, the user may choose to retain
some conjectures reflecting gained knowledge of the expected
protocol behavior. 2) The user understands that one of the
conjectures is wrong, in which case the user removes it from
the conjecture set, weakening the candidate invariant. 3) The
user judges that the CTI is not reachable. This means that
the invariant needs to be strengthened by adding a conjecture.



The new conjecture should eliminate the CTI, and should
generalize from it. This is the most creative task, and our
approach for it is explained below.

Graphical visualization of conjectures To allow the user
to examine and modify possible conjectures, Ivy provides a
graphical visualization of universally quantified conjectures.
Such a conjecture asserts that some sub-configuration of the
system is not present in any reachable state. That is, any state
of the system that contains this sub-configuration is not reach-
able. Ivy graphically depicts such conjectures by displaying
the forbidden sub-configuration. Sub-configurations are vi-
sualized similarly to the way states are displayed, but with a
different semantics.

As an example consider the conjecture depicted in Fig-
ure 7 (b). The visualization shows two nodes and their distinct
IDs; node1 is shown to be a leader, while node2 is not a leader.
Furthermore, the ID of node1 is lower (by le) than the ID of
node2. Note that no pending messages appear (no pnd edges),
and there is also no information about the topology (no next
or btw edges). Viewed as a conjecture, this graph asserts that
in any reachable state, there cannot be two nodes such that
the node with the lower ID is a leader and the node with
the higher ID is not a leader. Thus, this conjecture excludes
infinitely many states with any number of nodes above 2 and
any number of pending messages. It excludes all states that
contain any two nodes such that the node with the lower ID
is a leader and the node with the higher ID is not a leader.

Figure 7 (c) depicts an even stronger (more general)
conjecture: unlike Figure 7 (b), node2 is not labeled with
¬leader nor with leader. This means that the conjecture in
Figure 7 (c) excludes all the states that contain two nodes
such that the node with the lower ID is a leader, regardless of
whether the other node is a leader or not.

Obtaining helpful CTIs Since we rely on the user to guide
the generalization, it is critical to display a CTI that is easy
to understand and indicative of the proof failure. Therefore,
Ivy searches for “minimal” CTIs. Find Minimal CTI
automatically obtains a minimal CTI based on user provided
minimization parameters. Examples include minimizing the
number of elements, and minimizing certain relations (e.g.
minimizing the pnd relation).

Interactive generalization from CTIs When a CTI repre-
sents an unreachable state, we should strengthen the invariant
by adding a new conjecture to eliminate the CTI. One possible
universally quantified conjecture is the one which excludes
all states that contain the concrete CTI as a sub-configuration
(formally, a substructure) [17]. However, this conjecture may
be too specific, as the CTI contains many features that are not
relevant to the failure. This is where generalization is required,
or otherwise we may end up in a diverging refinement loop,
always strengthening the invariant with more conjectures that
are all too specific.

C0 ∀n1, n2.¬
(
leader(n1) ∧ leader(n2) ∧ n1 6= n2

)
C1 ∀n1, n2.¬

(
n1 6= n2 ∧ leader(n1) ∧ le(id(n1), id(n2))

)
C2 ∀n1, n2.¬

(
n1 6= n2 ∧ pnd(id(n1), n1) ∧ le(id(n1), id(n2))

)
C3 ∀n1, n2, n3.¬

(
btw(n1, n2, n3) ∧ pnd(id(n2), n1)∧
le(id(n2), id(n3))

)
Figure 6. The conjectures found using Ivy for the leader
election protocol. C0 is the safety property, and the remaining
conjectures (C1 - C3) were produced interactively. C0∧C1∧
C2 ∧ C3 is an inductive invariant for the protocol.

This is also where Ivy benefits from user intuition beyond
automatic tools, as it asks the user to guide generalization.
Ivy presents the user with a concrete CTI, and lets the user
eliminate some of the features of the CTI that the user judges
to be irrelevant. This already defines a generalization of the
CTI that excludes more states.

Next, the BMC + Auto Generalize procedure, ap-
plies bounded verification (with a user-specified bound) to
check the user’s suggestion and generalize further. If the test
fails, it means that the user’s generalized conjecture is vi-
olated in a reachable state, and a concrete counterexample
trace is displayed to let the user diagnose the problem. If
the test succeeds (i.e., the bounded verification formula is
unsatisfiable), Ivy automatically suggests a stronger gener-
alization, based on a minimal UNSAT core. The user then
decides whether to accept the suggested conjecture and add it
to the invariant, or to change the parameters in order to obtain
a different suggestion.

Next, we walk through this process for the leader election
protocol, demonstrating the different stages, until we obtain
an inductive invariant that proves the protocol’s safety.

Illustration using the leader election protocol Figure 6
summarizes the 3 iterations Ivy required to find an inductive
invariant for the leader election protocol. The initial set of
conjectures contains only C0, which is derived from the
assertion in Figure 1 line 17.

In the first iteration, since C0 alone is not inductive,
Ivy applies Find Minimal CTI. This results in the CTI
depicted in Figure 7 (a1). Figure 7 (a2) depicts a successor
state of (a1) reached after node2 receives the pending message
with its ID. The state (a1) satisfies C0, whereas (a2) violates
it, making (a1) a CTI. After examining this CTI, the user
judges that the state (a1) is unreachable, with the intuitive
explanation that node1 identifies itself as a leader despite the
fact that node2 has a higher ID. Thus, the user generalizes
away the irrelevant information, which includes pnd and
the ring topology, resulting in the generalization depicted
in Figure 7 (b).

Next, the user applies BMC + Auto Generalize
with bound 3 to this generalization. The BMC test succeeds,
and Ivy suggests the generalization in Figure 7 (c), where the
information that node2 is not a leader is also abstracted away.
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Figure 7. The 1st CTI generalization step for the leader
protocol, leading toC1. (a1) The CTI state that has one leader,
but makes a transition to a state (a2) with two leaders. The
root cause is that a node with non-maximal ID is a leader. (b)
A generalization created by the user by removing the topology
information and the pnd relation (c) Further generalization
obtained by BMC + Auto Generalize, which removed
the fact that node2 is not a leader.

The user approves this generalization, which corresponds to
conjecture C1 shown in Figure 6, so C1 is added to the set of
conjectures.

If the user had used bound 2 instead of 3 when applying
BMC + Auto Generalize, then Ivy would have sug-
gested a stronger generalization that also abstracts the ID
information, and states that if there are two distinct nodes,
none of them can be a leader. This conjecture is bogus, but
it is true for up to 2 loop iterations (since with 2 nodes, a
node can only become a leader after a send action followed
by 2 receive actions). It is therefore the role of the user to
select and adjust the bound for automatic generalization, and
to identify bogus generalizations when they are encountered.

After adding the correct conjecture C1, Ivy displays the
CTI depicted in Figure 8 (a1) with its successor state (a2).
Note that (a2) does not violate the safety property, but it vio-
lates C1 that was added to the invariant, since a node with a
non-maximal ID becomes a leader. The user examines (a1)
and concludes that it is not reachable, since it has a pending

(a1) (a2)

(b)

Figure 8. The 2nd CTI generalization step for the leader pro-
tocol, leading to C2. (a1) The CTI state and its successor (a2)
violating C1. The root cause is that a node with non-maximal
ID has a pending message with its own ID. (b) A generaliza-
tion created by the user by removing the topology information
and the leader relation. This generalization was validated but
not further generalized by BMC + Auto Generalize.

message to node1 with its own ID, despite the fact that node2
has a higher ID. Here, the user again realizes that the ring
topology is irrelevant and abstracts it away. The user also
abstracts away the leader information. On the other hand,
the user keeps the pnd information, in accordance with the
intuitive explanation of why the CTI is not reachable. The re-
sulting user-defined generalization is depicted in Figure 8 (b).
BMC + Auto Generalize with bound 3 validates this
generalization for 3 transitions, but does not manage to gener-
alize any further. Thus, the generalization is converted to C2

in Figure 6 which is added to the invariant, and the process
continues.

Finally, Figure 9 (a1) and (a2) depicts a CTI that leads
to a violation of C2. This CTI contains three nodes, with
a pending message that appears to bypass a node with a
higher ID. This time, the user does not abstract away the
topology since it is critical to the reason the CTI is not
reachable. The user only abstracts the leader information,
which leads to the generalization depicted in Figure 9 (b).
Note that in the generalized conjecture we no longer consider
the next relation, but rather the btw relation. This expresses
the fact that, as opposed to the concrete CTI, the conjecture
generalizes from the specific topology of a ring with exactly
3 nodes, to a ring that contains it as a sub-configuration, i.e. a
ring with at least 3 nodes that are not necessarily immediate
neighbors of each other. We do require that the three nodes
are ordered in such a way that node2 is between node1 and



(a1) (a2)
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Figure 9. The 3rd CTI generalization step for the leader
protocol, leading to C3. (a1) The CTI state and its successor
(a2) which violates C2. The root cause is that node1 has a
pending message with the ID of node2, even though node3 is
on the path from node2 to node1 and has an ID higher than
node2’s ID (equivalently, node2 is between node1 and node3
and has a lower ID than node3’s ID). (b) A generalization
created by the user by removing the leader relation. The
generalization does not contain next, only btw. (c) Further
generalization obtained by BMC + Auto Generalize,
which eliminated id1.

node2 in the ring (equivalently, node3 is between node2 and
node1).

Applying BMC + Auto Generalizewith a bound of
3 to Figure 9 (b) confirms this conjecture, and automatically
abstracts away the ID of node1, which results in the conjec-
ture depicted in Figure 9 (c), which corresponds to C3 in
Figure 6. The user adds this conjecture to the invariant. After
adding C3, Ivy reports that I = C0 ∧ C1 ∧ C2 ∧ C3 is an
inductive invariant for the leader election protocol.

3. RML: Relational Modeling Language with
Effectively Propositional Reasoning

In this section we define a simple modeling language, called
Relational Modeling Language (RML). RML is Turing-
complete, and suitable for modeling infinite-state systems.
RML is restricted in a way that ensures that checking veri-
fication conditions for RML programs is decidable, which
enables our interactive methodology for safety verification.
We start with RML’s syntax and informal semantics. We then
define a weakest precondition operator for RML, which is
used in the verification conditions.

3.1 RML Syntax and Informal Semantics
Figures 10 and 11 show the abstract syntax of RML. RML
imposes two main programming limitations: (i) the only
data structures are uninterpreted finite relations and stratified
functions, and (ii) program conditions and update formulas
have restricted quantifier structure.

RML further restricts programs to consist of a single non-
deterministic loop, with possible initialization and finalization
commands. Thus, RML commands are loop-free. While this
restriction simplifies the presentation of our approach, note
that it does not reduce RML’s expressive power as nested
loops can always be converted to a flat loop.

Declarations and states The declarations of an RML pro-
gram define a set of sorts S , a set of sorted relationsR, a set
of sorted functions F , a set of sorted program variables V ,
and a set of axioms A in the form of (closed) ∃∗∀∗-formulas.

A state of an RML program associates a finite set of
elements (domain) with each sort, and defines valuations
(interpretations) for all relations, functions, and variables,
such that all the axioms are satisfied. The values of relations
and functions can be viewed as finite tables (or finite sets
of tuples). The values of program variables, relations and
functions are all mutable by the program.

Note that while every program state can be described by
finite tables, there is no bound on the size of the tables, and
thus an RML program has infinitely many states and can
model infinite state systems.

For example, a network with an unbounded number of
nodes can be modeled with sorts for nodes and messages, and
a relation that keeps track of pending messages in the network.
Functions can be used to relate each node to a unique ID and
other node specific data, and to relate each message to its
source, destination, and other message fields. While in any
given state the number of nodes and the number of pending
messages is finite, there is no bound on the possible number
of nodes or pending messages.

Function stratification The set of functions F is required
to be stratified. This means that the sorts of the program
can be ordered by a total order < such that if F contains
a function f : s1, . . . , sn → s′ then s′ < si for every
1 ≤ i ≤ n. For example, if F contains a function from



〈rml〉 ::= 〈decls〉 ; 〈cmd〉 ; while ∗ do 〈cmd〉 ; 〈cmd〉
〈decls〉 ::= ε | 〈decls〉; 〈decls〉

| sort s
| relation r : s
| function f : s→ s
| variable v : s
| axiom ϕEA

〈cmd〉 ::= skip do nothing
| abort terminate abnormally
| r (x) := ϕQF (x) quantifier-free update of relation r
| f (x) := t (x) update of function f to term t (x)
| v := ∗ havoc of variable v
| assume ϕEA assume ∃∗∀∗ formula holds
| 〈cmd〉 ; 〈cmd〉 sequential composition
| 〈cmd〉 | 〈cmd〉 non-deterministic choice

Figure 10. Syntax of RML. s denotes a sort identifier and s
denotes a vector of sort identifiers separated by commas. r
denotes a relation identifier. f denotes a function identifier.
v denotes an identifier of a zero-arity function. x denotes a
vector of logical variables. t (x) denotes a term with free
logical variables x and ϕQF (x) denotes a quantifier-free
formula with free logical variables x. ϕEA denotes a closed
formula with quantifier prefix ∃∗∀∗. The syntax of terms and
formulas is given in Figure 11.

messages to nodes (e.g. the message source), then F cannot
contain a function from nodes to messages. This restriction
on functions is essential for the decidability properties of
RML (see Section 3.3).

Commands Each command investigates and potentially
updates the state of the program. The semantics of skip
and abort are standard. The command r(x1, . . . , xn) :=
ϕQF(x1, . . . , xn) is used to update the n-ary relation r to the
set of all n-tuples that satisfy the quantifier-free formula ϕQF.
For example, r(x1, x2) := (x1 = x2) updates the binary
relation r to the identity relation; r(x1, x2) := r(x2, x1)
updates r to its inverse relation; r1(x) := r2(x, v) updates r1
to the set of all elements that are related by r2 to the current
value (interpretation) of program variable v.

The command f(x1, . . . , xn) := t(x1, . . . , xn) is used to
update the n-ary function f to match every n-tuple of elements
to the element given by the term t. Note that while relations
are updated to quantifier-free formulas, functions are updated
to terms. For example, f(x) := x updates the function f
to the identity function; f(x1, x2) := f(x2, x1) updates f to
its transpose; f(x) := ite(r(x), x, f(x)) updates f to be the
identity function for all elements in r, and leaves it unchanged
for all elements not in r.

The havoc command v := ∗ performs a non-deterministic
assignment to v. The assume command is used to restrict
the executions of the program to those that satisfy the given

〈t〉 ::= x logical variable x
| v program variable v
| f (〈t〉, . . . , 〈t〉) application of function f
| ite (ϕQF, 〈t〉, 〈t〉) if-then-else term

〈ϕQF〉 ::= r (〈t〉, . . . , 〈t〉) membership in relation r
| 〈t〉 = 〈t〉 equality between terms
| 〈ϕQF〉 ∧ 〈ϕQF〉 | 〈ϕQF〉 ∨ 〈ϕQF〉 | ¬〈ϕQF〉

〈ϕAF〉 ::= ∃x1, . . . , xn 〈ϕQF〉 | ∀x1, . . . , xn 〈ϕQF〉
| 〈ϕAF〉 ∧ 〈ϕAF〉 | 〈ϕAF〉 ∨ 〈ϕAF〉 | ¬〈ϕAF〉

〈ϕEA〉 ::= ∃x1, . . . , xn ∀xn+1, . . . , xn+m 〈ϕQF〉
〈ϕAE〉 ::= ∀x1, . . . , xn ∃xn+1, . . . , xn+m 〈ϕQF〉

Figure 11. Syntax of terms and formulas. Formulas in
〈ϕAF〉 (alternation-free formulas), 〈ϕEA〉 (∃∗∀∗-formulas),
and 〈ϕAE〉 (∀∗∃∗-formulas) are assumed to be closed (without
free logical variables). Note that altrenation-free formulas are
closed under negation, and negating an ∃∗∀∗-formula results
in a ∀∗∃∗-formula and vice versa (after converting to prenex
normal form).

Syntactic Sugar RML Command

assert ϕAE
{assume ¬ϕAE ; abort}
| skip

if ϕAF then C1 else C2
{assume ϕAF ; C1} |
{assume ¬ϕAF ;C2}

r.insert (x | ϕQF (x)) r (x) := r (x) ∨ ϕQF (x)
r.remove (x | ϕQF (x)) r (x) := r (x) ∧ ¬ϕQF (x)
r.insert

(
t
)

r (x) := r (x) ∨
(
x = t

)
r.remove

(
t
)

r (x) := r (x) ∧ ¬
(
x = t

)
f
(
t
)

:= t f (x) := ite
(
x = t, t, f (x)

)
Figure 12. Syntactic sugars for RML. ϕAE denotes a formula
with ∀∗∃∗ prefix. ϕAF denotes an alternation-free formula. r
denotes an n-ary relation, f denotes an n-ary function, x
denotes a vector of n logical variables, and t denotes a vector
of n closed terms.

(closed) ∃∗∀∗-formula. Sequential composition and non-
deterministic choice are defined in the usual way.

The commands given in Figure 10 are the core of RML.
Figure 12 provides several useful syntactic sugars for RML,
including an assert command, an if-then-else com-
mand, and convenient update commands for relations and
functions.

Executions and safety An RML program has the form
decls ; Cinit ; while ∗ do Cbody ; Cfinal. Execution
traces of an RML program are defined as a sequence of states
that correspond to executing Cinit (from any state satisfying
the axioms A), then executing Cbody any number of times
(including zero), and then executing Cfinal. An abort
command aborts the execution and terminates the trace. A



trace that leads to the execution of an abort command is
called an error trace. An RML program is safe if it has no
error traces.

Turing-completeness To see that RML is Turing-complete,
we can encode a (Minsky) counter machine in RML. Each
counter ci can be encoded with a unary relation ri. The value
of counter ci is the number of elements in ri. Testing for zero,
incrementing, and decrementing counters can all be easily
expressed by RML commands.

3.2 Axiomatic Semantics
We now provide a formal semantics for RML by defining
a weakest precondition operator for RML commands with
respect to assertions expressed in sorted first-order logic. We
start with a formal definition of program states as structures
of sorted first-order logic, and program assertions as formulas
in sorted first-order logic.

States Recall that an RML program declares a set of pro-
gram variables V , relations R, and functions F . We define
a sorted first-order vocabulary Σ, that contains a relation
symbol for every relation inR, a function symbol for every
function in F , and a nullary function symbol for every vari-
able in V , all with appropriate sorts. A state of the program
is given by a sorted first-order structure over Σ, defined as
follows.

Definition 1 (Structures). Given a vocabulary Σ, a structure
of Σ is a pair s = (D, I), where D is a finite sorted domain,
and I is an interpretation function, mapping each symbol
of Σ to its meaning in s. I associates each k-ary relation
symbol r ∈ Σ with a function I(r) : Dk → {0, 1}, and
associates each k-ary function symbol f ∈ Σ with a function
I(f) : Dk+1 → {0, 1} such that for any x1, . . . , xk ∈ D,
I(f)(x1, . . . , xk, y) = 1 for exactly one element y ∈ D 1. I
also obeys the sort restrictions.

The states of an RML program are (finite) structures of Σ
that satisfy all the axioms A declared by the program.

Assertions Assertions on program states are specified by
closed formulas (i.e., without free logical variables) in sorted
first-order logic over Σ (see Figure 11). In the sequel, we
use assertions and formulas interchangeably, and they are
always assumed to be closed. A state satisfies an assertion if
it satisfies it in the usual semantics of sorted first-order logic.
Remark 3.1. The reader should be careful not to confuse
program variables (modeled as nullary function symbols in
Σ) with logical variables used in first-order formulas.

Weakest precondition of RML commands Figure 13 presents
the definition of a weakest precondition operator for RML,
denoted wp. The weakest precondition [5] of a command
C with respect to an assertion Q, denoted wp(C , Q), is

1 For uniformity of the presentation of our approach, we treat functions of
arity k as “special” relations of arity k+1 that relate each k-tuple to exactly
one element.

wp (skip, Q) = Q

wp (abort, Q) = false

wp (r (x) := ϕQF (x) , Q) = (A → Q) [ϕQF (s) / r (s)]

wp (f (x) := t (x) , Q) = (A → Q) [t (s) / f (s)]

wp (v := ∗, Q) = ∀x. (A → Q) [x / v]

wp (assume ϕEA, Q) = ϕEA → Q

wp (C1 ; C2, Q) = wp (C1,wp (C2, Q))

wp (C1 | C2, Q) = wp (C1, Q) ∧ wp (C2, Q)

Figure 13. Rules for wp. ϕ [β / α] denotes ϕ with occur-
rences of α substituted by β. s denotes a vector of terms.

an assertion Q′ such that every execution of C starting
from a state that satisfies Q′ leads to a state that satisfies Q.
Further, wp(C , Q) is the weakest such assertion. Namely,
Q′⇒wp(C , Q) for every Q′ as above.

The rules for wp of skip and abort are standard, as
are the rules for assume, sequential composition and non-
deterministic choice. The rules for updates of relations and
functions and for havoc are instances of Hoare’s assignment
rule [10], applied to the setting of RML and adjusted for the
fact that state mutations are restricted by the axioms A.

Safety Recall that an RML program is safe if it has no
execution trace that leads to an abort command, and that
an execution trace of an RML program consists of execut-
ing Cinit from any state satisfying the axioms A, then ex-
ecuting Cbody any number of times (including zero), and
then executing Cfinal. To formalize safety using wp, denote
C 0
body = skip and C k+1

body = C k
body ; Cbody for any k ≥ 0.

Thus, C k
body is Cbody repeated sequentially k times. An RML

program is safe iff for any k ≥ 0 we have

A ⇒ wp
(
Cinit ; C k

body ; Cfinal, true
)

(k-safety)
(1)

where A is the set of axioms of the program.

Inductive invariants The safety of an RML program can be
established by providing a formula I , such that the following
conditions hold:

A ⇒ wp (Cinit, I) (initiation)
A ∧ I ⇒ wp (Cfinal, true) (safety)
A ∧ I ⇒ wp (Cbody, I) (consecution)

(2)

A formula that satisfies these conditions is called an inductive
invariant for the RML program.

3.3 RML Decidability Properties
We now show how the restrictions to quantifier-free updates
and ∃∗∀∗ assume’s, combined with the requirement that
function symbols are stratified, lead to decidability of verifi-
cation conditions for RML programs.

A key property of the wp operator (Figure 13) is that
∀∗∃∗-formulas are closed under wp:



Lemma 3.2. Let C be an RML command. If Q is a ∀∗∃∗-
formula, then so is the prenex normal form of wp(C , Q).

Note that this property depends both on the restriction of
updates to quantifier-free formulas, and on the restriction of
assume’s and axioms to ∃∗∀∗-formulas.

EPR The effectively-propositional (EPR) fragment of first-
order logic, also known as the Bernays-Schönfinkel-Ramsey
class is restricted to relational first-order formulas (i.e., for-
mulas over a vocabulary that contains constant symbols and
relation symbols but no function symbols) with a quantifier
prefix ∃∗∀∗. Satisfiability of EPR formulas is decidable [21].
Moreover, formulas in this fragment enjoy the finite model
property, meaning that a satisfiable formula is guaranteed to
have a finite model. The size of this model is bounded by the
total number of existential quantifiers and constants in the
formula. The reason for this is that given an ∃∗∀∗-formula,
we can obtain an equi-satisfiable quantifier-free formula by
replacing the existentially quantified variables by Skolem
constants, and then instantiating the universal quantifiers for
all constants and Skolem constants.

While EPR does not allow any function symbols, it can
be easily extended to allow stratified function symbols while
maintaining both the finite model property and the decidabil-
ity of the satisfiability problem (though the models may be
larger). The reason for this is that, for a finite set of constant
and Skolem constant symbols, stratified function symbols can
only generate a finite number of ground terms (for a similar
procedure, see [13]).

Decidability of checking RML verification conditions A
common task that arises when verifying an RML program
is to check, for a given RML command C and formulas P
and Q, whether or not P ⇒ wp(C , Q), as in Equations (1)
and (2). The following theorem shows that if P and Q have
the right quantifier structure, then this check is decidable.

Theorem 3.3. Let C be an RML command, P be an
∃∗∀∗-formula, and Q be a ∀∗∃∗-formula. Then, check-
ing if P ⇒ wp(C , Q) is decidable. Furthermore, if
P 6⇒ wp(C , Q), we can obtain a finite counterexample
to the implication.

Proof. Checking the implication is equivalent to checking
the unsatisfiability of the formula P ∧ ¬wp(C , Q). Q is
a ∀∗∃∗-formula, so by Lemma 3.2, wp(C , Q) is a ∀∗∃∗-
formula, and ¬wp(C , Q) is an ∃∗∀∗-formula. Thus, P ∧
¬wp(C , Q) is an ∃∗∀∗-formula. Since all function symbols
in RML are stratified, this formula is in EPR extended with
stratified function symbols, and its satisfiability is decidable.
Furthermore, this formula has the finite model property, and
thus if it is satisfiable, we can obtain a finite model of it.

4. An Interactive Methodology for Safety
Verification

In this section, we describe our interactive approach for safety
verification of RML programs. Recall that an RML program
has the form

decls ; Cinit ; while ∗ do Cbody ; Cfinal

We wish to verify the safety of the program, i.e. that it cannot
reach an abort command. The core of this problem is to
verify that all states reachable at the loop head will not lead to
an abort 2, namely that they satisfy both wp (Cfinal, true)
and wp (Cbody, true).

The key idea is to combine automated analysis with
user guidance in order to construct a universal inductive
invariant that proves safety. The next subsection describes a
preliminary stage for debugging the RML program, and the
following subsections describe our interactive methodology
of constructing universal inductive invariants.

4.1 Debugging via Symbolic Bounded Verification
Before starting the search for an inductive invariant, it makes
sense to first search for bugs in the RML program. This can
be done by unrolling the loop a bounded number of times. As
we are most interested in states reachable at the loop head, we
define an assertion ϕ to be k-invariant if it holds in all states
reachable at the loop head after at most k loop iterations.
Thus, ϕ is k-invariant iff:

A ⇒
k∧

j=0

wp
(
Cinit ; C j

body, ϕ
)

(3)

Since the axioms A are ∃∗∀∗-formulas, then by Theo-
rem 3.3 checking the k-invariance of a ∀∗∃∗-formula ϕ is
decidable. Furthermore, if ϕ is not k-invariant, we can ob-
tain a finite model ofA∧¬wp

(
Cinit ; C j

body, ϕ
)

for some
0 ≤ j ≤ k. From this model, we can construct an execution
trace that executes j loop iterations and reaches a state that
violates ϕ. This trace can be graphically displayed to the user
as a concrete counterexample to the invariance of ϕ. Note
that while checking k-invariance bounds the number of loop
iterations, it does not bound the size of the states. Thus, if
a property is found to be k-invariant, it holds in all states
reachable by k iterations. This is in contrast to finite-state
bounded model checking techniques which bound the state
space.

The first step when using Ivy is to model the system
at hand as an RML program, and then debug the pro-
gram by checking k-invariance of wp (Cfinal, true) and
wp (Cbody, true) (see Figure 3). If a counterexample is found,
the user can examine the trace and modify the RML program

2 Verifying that no execution of Cinit leads to abort is simple as Cinit

executes only once, and amounts to checking ifA ⇒ wp (Cinit, true).



to either fix a bug in the code, or to fix a bug in the specifi-
cation (the assertions). Once no more counterexample traces
exist up to a bound that satisfies the user, the user moves to
the second step of constructing a universal inductive invariant
that proves the safety of the system for unbounded number
of loop iterations.

4.2 Overview of the Interactive Search for Universal
Inductive Invariants

Ivy assists the user in obtaining a universal inductive invariant.
Recall that a formula I is an inductive invariant for the RML
program if the conditions listed in Equation (2)) hold. Recall
further that if I is a universally quantified formula, then by
Theorem 3.3 these conditions are decidable, and if I does
not satisfy them, we can obtain a finite state s that is a
counterexample to one of the conditions. Such a state s is a
counterexample to induction (CTI).

Our methodology interactively constructs a universal in-
ductive invariant represented as a conjunction of conjectures,
i.e., I =

∧n
i=1 ϕi. Each conjecture ϕi is a closed universal

formula. In the sequel, we interchangeably refer to I as a
set of conjectures and as the formula obtained from their
conjunction.

Our methodology, presented in Figure 5, guides the user
through an iterative search for a universal inductive invariant
I by generalization from CTIs. We maintain the fact that all
conjectures satisfy initiation (A ⇒ wp (Cinit, ϕi)), so each
CTI we obtain is always a state that satisfies all conjectures,
but leads either to an abort command by executing Cbody

or Cfinal, or to a state that violates one of the conjectures by
executing Cbody.

Initialization The search starts from a given set of con-
jectures as a candidate inductive invariant I . For exam-
ple, I can be initialized to true. If wp (Cfinal, true) and
wp (Cbody, true) are universal, then I can initially include
them (after checking that they satisfy initiation). If the search
starts after a modification of the RML program (e.g. to fix a
bug), then conjectures that were learned before can be reused.
Additional initial conjectures can be computed by applying
basic abstract interpretation techniques.

Iterations Each iteration starts by (automatically) checking
whether the current candidate I is an inductive invariant. If
I is not yet an inductive invariant, a CTI is presented to the
user, which is a state s that either leads to an abort via
Cfinal (safety violation), or leads to a state that violates I
via Cbody (consecution violation). The user can choose to
strengthen I by conjoining it with an additional conjecture
that excludes the CTI from I . To this end, we provide
automatic mechanisms to assist in generalizing from the
CTI to obtain a conjecture that excludes it. In case of a
consecution violation, the user may also choose to weaken
I by eliminating one (or more) of the conjectures. The user
can also choose to modify the RML program in case the CTI

indicates a bug. This process continues until an inductive
invariant is found.

For I to be an inductive invariant, all the conjectures ϕi

need to be invariants (i.e., hold in all states reachable at the
loop head). This might not hold in the intermediate steps
of the search, but it guides strengthening and weakening:
strengthening aims at only adding conjectures that are in-
variants, and weakening aims at identifying and removing
conjectures that are not invariants. While strengthening and
weakening are ultimately performed by the user, we provide
several automatic mechanisms to assist the user in this pro-
cess.

Obtaining a minimal CTI When I is not inductive, it is
desirable to present the user with a CTI that is easy to
understand, and not cluttered with many unnecessary features.
This also tends to lead to better generalizations from the CTI.
To this end, we automatically search for a “minimal” CTI,
where the minimization parameters are defined by the user
(see Section 4.3).

Interactive generalization To eliminate the CTI s, the user
needs to either strengthen I to exclude s from I , or, in case
of a consecution violation, to weaken I to include a state
reachable from s via Cbody. Intuitively, if s is not reachable,
then I should be strengthened to exclude it. If s is reachable,
then I should be weakened. Clearly, checking whether s is
reachable is infeasible. Instead, we provide the user with a
generalization assistance for coming up with a new conjecture
to strengthen I . The goal is to come up with a conjecture that
is satisfied by all the reachable states. During the attempt to
compute a generalization, the user might also realize that an
existing conjecture is in fact not an invariant (i.e., it is not
satisfied by all reachable states), and hence weakening is in
order. In addition, the user might also find a modeling bug
which means the RML program should be fixed.

Generalizations are explained in Section 4.4, and the inter-
active generalization process is explained in Section 4.5. Here
again, the user defines various parameters for generalization,
and Ivy automatically finds a candidate that meets the criteria.
The user can further change the suggested generalization and
can use additional automated checks to decide whether to
keep it.
Remark 4.1. If all the conjectures added by the user exclude
only unreachable states (i.e., all are invariants), then weak-
ening is never needed. As such, most of the automated
assistance we provide focuses on helping the user obtaining
“good” conjectures for strengthening—conjectures that do not
exclude reachable states. Weakening will typically be used
when some conjecture turns out to be “wrong” in the sense
that it does exclude reachable states.

4.3 Obtaining Minimal CTIs
We refine the search for CTIs by trying to find a minimal
CTI according to user adjustable measures. As a general rule,
smaller CTIs are desirable since they are both easier to under-



stand, which is important for interactive generalization, and
more likely to result in more general (stronger) conjectures.
The basic notion of a small CTI refers to the number of ele-
ments in its domain. However, other quantitative measures
are of interest as well. For example, it is helpful to minimize
the number of elements (or tuples) in a relation, e.g. if the
relation appears as a guard for protocol actions (such as the
pnd relation in the leader election protocol of Figure 1). Thus,
we define a set of useful minimization measures, and let the
user select which ones to minimize, and in which order.

Minimization measures The considered measures are:
• Size of sort S: |DS | where DS is the domain of sort S.
• Number of positive tuples of r: |{e | I(r)(e) = 1}|.
• Number of negative tuples of r: |{e | I(r)(e) = 0}|.

Each measure m induces an order ≤m on structures, and
each tuple (m1, . . . ,mt) of measures induces a “smaller than”
relation on structures which is defined by the lexicographic
order constructed from the orders ≤mi .

Minimization procedure Given the tuple of measures to
minimize, provided by the user, Algorithm 1 automatically
finds a CTI that is minimal with respect to this lexicographic
order. The idea is to conjoin ψcti (which encodes violation
of inductiveness) with a formula ψmin that is computed
incrementally and enforces minimality. For a measure m,
ϕm(n) is an ∃∗∀∗ clause stating that the value of m is no
more than n. Such constraints are added to ψmin for every
m, by their order in the tuple, where n is chosen to be the
minimal number for which the constraint is satisfiable (with
the previous constraints). Finally, a CTI that obeys all the
additional constraints is computed and returned.

For example, consider a k-ary relation r. We encode the
property that the number of positive tuples of r is at most n
as follows: ∃x1, . . . xn.∀y.

(
r(y) →

∨n
i=1 y = xi

)
, where

x1, . . . , xn, y denote k-tuples of logical variables.

Algorithm 1: Obtaining a Minimal CTI
1 if ψcti is unsatisfiable then return None;
2 ψmin := true ;
3 for m in (m1, . . . ,mt) do
4 for n in 0, 1, 2, . . . do
5 if ψcti ∧ ψmin ∧ ϕm(n) is satisfiable then
6 ψmin := ψmin ∧ ϕm(n) ;
7 break
8 return s such that s |= ψcti ∧ ψmin

4.4 Formalizing Generalizations as Partial Structures
In this subsection we present the notion of a generalization
and the notion of a conjecture associated with a general-
ization. These notions are key ingredients in the interactive
generalization step described in the next subsection.

Recall that a CTI is a structure. Generalizations of a
CTI are given by partial structures, where relation symbols
and function symbols are interpreted as partial functions.
Formally:

Definition 2 (Partial Structures). Given a vocabulary Σ
and a domain D, a partial interpretation function I of Σ
over D associates every k-ary relation symbol r ∈ Σ with
a partial function I(r) : Dk ⇀ {0, 1}, and associates
every k-ary function symbol f ∈ Σ with a partial function
I(f) : Dk+1 ⇀ {0, 1} such that for any x1, . . . , xk ∈ D,
I(f)(x1, . . . , xk, y) = 1 for at most one element y ∈ D. I
must also obey the sort restrictions.

A partial structure over Σ is a pair (D, I), where I is a
partial interpretation function of Σ over domain D.

Note that a structure is a special case of a partial structure.
Intuitively, generalization takes place when a CTI is believed
to be unreachable, and a partial structure generalizes a CTI
(structure) by turning some values (“facts”) to be undefined
or unspecified. For example, in a partial structure, I(r)(e)
might remain undefined for some tuple e. This is useful if the
user believes that the structure is still unreachable, regardless
of the value of I(r)(e). In Figures 7 to 9, (a1) and (a2) always
represent total structures, while (b) and (c) represent partial
structures.

A natural generalization partial order can be defined over
partial structures:

Definition 3 (Generalization Partial Order). Let I1 and I2
be two partial interpretation functions of Σ over D1 and
D2 respectively, such that D2 ⊆ D1. We say that I2 v
I1 if for every k-ary relation or function symbol a ∈ Σ,
If e ∈ dom(I2(a)), then e ∈ dom(I1(a)) as well, and
I2(a)(e) = I1(a)(e).

For partial structures s1 = (D1, I1) and s2 = (D2, s2) of
Σ, we say that s2 v s1 if D2 ⊆ D1 and I2 v I1.

The generalization partial order extends the substructure
relation of (total) structures. Intuitively, s2 v s1 if the inter-
pretation provided by s1 is at least as “complete” (defined)
as the interpretation provided by s2, and the two agree on
elements (or tuples) for which s2 is defined. Thus, s2 v s1
when s2 represents more states than s1, and we say that s2 is
a generalization of s1.

From partial structures to conjectures Intuitively, every
partial structure s represents an infinite set of structures that
are more specific than s (they interpret more facts), and
the conjecture that a partial structure induces excludes all
these structures (states). Formally, a partial structure induces
a universally quantified conjecture that is obtained as the
negation of the diagram of the partial structure, where the
classic definition of a diagram of a structure is extended to
partial structures.

Definition 4 (Diagram). Let s = (D, I) be a finite partial
structure of Σ and let D′ = {e1, . . . , e|D′|} ⊆ D denote the
set of elements ei for which there exists (at least one) relation
or function symbol a ∈ Σ such that ei appears in the domain
of definition of I(a). The diagram of s, denoted by Diag(s),
is the following formula over Σ:

∃x1 . . . x|D′|.distinct(x1 . . . x|D′|) ∧ ψ



where ψ is the conjunction of:

• r(xi1 , . . . , xik) for every k-ary relation r in Σ and every
i1, . . . , ik s.t. I(r)(ei1 , . . . , eik) = 1, and

• ¬r(xi1 , . . . , xik) for every k-ary relation r in Σ and every
i1, . . . , ik s.t. I(r)(ei1 , . . . , eik) = 0, and

• f(xi1 , . . . , xik) = xj for every k-ary function f in Σ and
every i1, . . . , ik and j s.t. I(f)(ei1 , . . . , eik , ej) = 1, and

• f(xi1 , . . . , xik) 6= xj for every k-ary function f in Σ and
every i1, . . . , ik and j s.t. I(f)(ei1 , . . . , eik , ej) = 0.

Intuitively, Diag(s) is obtained by treating individuals in D
as existentially quantified variables and explicitly encoding
all the facts that are defined in s.

The negation of the diagram of s constitutes a conjecture
that is falsified by all structures that are more specific than s.
This includes all structures that contain s as a substructure.

Definition 5 (Conjecture). Let s be a partial structure. The
conjecture associated with s, denoted ϕ(s), is the universal
formula equivalent to ¬Diag(s).

Lemma 4.2. Let s be a partial structure and let s′ be a (total)
structure such that s v s′. Then s′ 6|= ϕ(s).

Note that if s2 v s1, then ϕ(s2)⇒ϕ(s1) i.e., a larger
generalization results in a stronger conjecture.

This connection between partial structures and conjectures
is at the root of our graphical interaction technique. We
present the user with partial structures, and the user can
control which facts to make undefined, thus changing the
partial structure. The semantics of the partial structure is
given by the conjecture associated with it. The conjectures
C1, C2, and C3 of Figure 6 are the conjectures associated
with the partial structures depicted in Figure 7 (c), Figure 8
(b), and Figure 9 (c) respectively.

4.5 Interactive Generalization
Generalization of a CTI s in Ivy consists of the following
conceptual phases that are controlled by the user:

Coarse-grained manual generalization The user graphi-
cally selects an upper bound for generalization su v s, with
the intent to obtain a v-smallest generalization s′ of su. In-
tuitively, the upper bound su defines which elements of the
domain may participate in the generalization and which tuples
of which relations may stay interpreted in the generalization.
For example, if a user believes that the CTI remains unreach-
able even when some I(r)(e) is undefined, they can use this
intuition to define the upper bound.

In Ivy the user defines su by graphically marking the
elements of the domain that will remain in the domain of the
partial structure. In addition, for every relation or function
symbol a, the user can choose to turn all positive instances
of I(a) (i.e., all tuples e such that I(a)(e) = 1) to undefined,
or they can choose to turn all negative instances of I(a)
to undefined. The user makes such choices by selecting
appropriate checkboxes for every symbol.

In Figures 7 to 9, (b) depicts the upper bound su selected
by the user according to the user’s intuition.

Fine-grained automatic generalization via k-invariance
Ivy searches for a v-smallest generalization s′ that general-
izes su such that ϕ(s′) is k-invariant (i.e., s′ is unreachable
in k steps), where k is provided by the user.

This process begins by checking if ϕ(su) is k-invariant
using Equation (3). If verification fails, the user is presented
with a trace that explains the violation. Based on this trace,
the user can either redefine su to be less general, or they may
decide to modify the RML program if a bug is revealed.

If ϕ(su) is k-invariant, it means that the negation of
Equation (3) for ϕ(su) is unsatisfiable. In this case, Ivy
computes the minimal UNSAT core out of the literals of
ϕ(su) and uses it to define a most general (v-smallest) sm
such that ϕ(sm) is still k-invariant. The partial structure
sm obtained by the UNSAT core is displayed to the user
as a candidate generalization (the user can also see the
corresponding conjecture).

The partial structures, sm, obtained in this stage are
depicted in Figures 7 and 9 (c). For the CTI of Figure 8,
su, depicted in (b), is already minimal, and the UNSAT core
is not able to remove any literals (so in this case su = sm).

User investigates the suggested generalization After the
automatic generalization found a stronger conjecture ϕ(sm)
that is still k-invariant, the user must decide whether to add
this conjecture to the candidate inductive invariant I . In order
to make this decision, the user can check additional properties
of the generalization (and the conjecture associated with
it). For example, the user may check if it is k′-invariant for
some k′ > k. The user can also examine both the graphical
visualization of sm and a textual representation of ϕ(sm) and
judge it according to their intuition about the system.

If the obtained conjecture does not seem correct, the user
can choose to increase k and try again. If a conjecture that
appears bogus remains k-invariant even for large k, it may
indicate a bug in the RML program that causes the behaviors
of the program to be too restricted (e.g. an axiom or an assume
that are too strong). The user may also choose to manually
fine-tune the conjecture by re-introducing interpretations that
became undefined. The user can also choose to change the
generalization upper bound su or even ask Ivy for a new
CTI, and start over. Eventually, the user must decide on a
conjecture to add to I for the process to make progress.

5. Initial Experience
In this section we provide an empirical evaluation of the
approach presented above. Ivy is implemented in Python and
uses Z3 [4] for satisfiability testing. Ivy supports both the
procedure for symbolic bounded verification described in
Section 4.1 and the procedures for interactive construction
of inductive invariants described in Sections 4.2 to 4.5.
Ivy provides a graphical user interface implemented using
JavaScript in an IPython [25] notebook.



5.1 Protocols
Lock server We consider a simple lock server example
taken from Verdi [28, Fig. 3]. The system contains an un-
bounded number of clients and a single server. Each client
has a flag that denotes whether it thinks it holds the lock or
not. The server maintains a list of clients that requested the
lock, with the intent of always granting the lock to the client
at the head of the list. A client can send a lock request to
the server. When this request is received the server adds the
client to the end of the list. If the list was previously empty,
the server will also immediately send back a grant message
to the client. A client that holds the lock can send an unlock
message that, when received, will cause the server to remove
the client from the waiting list, and send a grant message to
the new head of the list. In this protocol, messages cannot be
duplicated by the network, but they can be reordered. Con-
sequently, the same client can appear multiple time in the
server’s waiting list. The safety property to verify is that no
two clients can simultaneously think they hold the lock.

Distributed lock protocol Next, we consider a simple dis-
tributed lock protocol taken from [8, 12] that allows an un-
bounded set of nodes to transfer a lock between each other
without a central server. Each node maintains an integer de-
noting its current epoch and a flag that denotes if it currently
holds the lock. A node at epoch e that holds the lock, can
transfer the lock to another node by sending a transfer mes-
sage with epoch e + 1. A node at epoch e that receives a
transfer message with epoch e′ ignores it if e′ ≤ e, and other-
wise it moves to epoch e′, takes the lock, and sends a locked
message with epoch e′. In this protocol, messages can be
duplicated and reordered by the network. The safety property
to verify is that all locked messages within the same epoch
come from a single node.

Learning switch Learning switches are a basic component
in networking. A learning switch maintains a table, used to
route incoming packets. On receiving a packet, the learning
switch adds a table entry indicating that the source address
can be reached by forwarding out the incoming port. It then
checks to see if the destination address has an entry in the
table, and if so forwards the packet using this entry. If no entry
exists it floods the packet out all of its ports with the exception
of the incoming port. For this protocol we check whether the
routing tables for all switches could contain a forwarding
loops. We consider a model with an unbounded number of
switches and an unbounded forwarding table. routing table
of each switch contains an unbounded number of entries.

We model the network using a binary relation link de-
scribing the topology of the network and a 4-arity relation
pending of the set of all packets pending in the network;
pending(s, d, sw1, sw2) implies a packet with source s and
destination d is pending to be received along the sw1–sw2

link. We store the routing tables using relations learned, and
route. For verification we use route∗ a relation which mod-

els the reflexive transitive closure of route. The modeling
maintains route∗ using the standard technique for updating
transitive closure (e.g. [14]). The safety property is specified
by an assertion that whenever a switch learns a new route, it
does not introduce a cycle in the forwarding graph.

Database chain consistency Transaction processing is a
common task performed by database engines. These engines
ensure that (a) all operations (reads or writes) within a
transaction appear to have been executed at a single point in
time (atomicity), (b) a total order can be established between
the committed transactions for a database (serializability),
and (c) no transaction can read partial results from another
transaction (isolation). Recent work (e.g., [30]) has provided
a chain based mechanism to provide these guarantees in
multi-node databases. In this model the database is sharded,
i.e., each row lives on a single node, and we wish to allow
transactions to operate across rows in different nodes.

Chain based mechanisms work by splitting each transac-
tion into a sequence of subtransactions, where each subtrans-
action only accesses rows on a single node. These subtrans-
actions are executed sequentially, and traditional techniques
are used to ensure that subtransaction execution does not vio-
late safety conditions. Once a subtransaction has successfully
executed, we say it has precommitted, i.e., the transaction
cannot be aborted due to command in the subtransaction.
Once all subtransactions in a transaction have precommitted,
the transaction itself commits, if any subtransaction aborts
the entire transaction is aborted. We used Ivy to show that one
such chain transaction mechanism provides all of the safety
guarantees provided by traditional databases.

The transaction protocol was modeled in RML using a sort
for transaction, node, key (row) and subtransaction. Commit
times are implicitly modeled by transactions (since each
transaction has a unique commit time), and unary relations are
used to indicate that a transaction has committed or aborted.
We modeled the sequence of subtransactions in a transaction
using the binary relation opOrder and tracked a transactions
dependencies using the binary relation writeTx (indicating a
transaction t wrote to a row) and a ternary relation dependsTx
(indicating transaction t read a given row, and observed
writes from transaction t′). To this model we added assertions
ensuring that (a) a transaction reading row r reads the last
committed value for that row, and (b) uncommitted values are
not read. For our protocol this is sufficient to ensure atomicity.

Chord ring maintenance Chord is a peer-to-peer protocol
implementing a distributed hash table. In [29], Zave presented
a model of the part of the protocol that implements a self-
stabilizing ring. This was proved correct for the case of
up to 8 participants, but the parameterized case was left
open. We modeled Chord in Ivy and attempted to prove
the primary safety property, which is that the ring remains
connected under certain assumptions about failures. Our
method was similar to Houdini [6] in that we described a class
of formulas using a template, and used abstract interpretation



Protocol S RF C I G
Leader election in ring 2 5 3 12 3
Lock server 5 11 3 21 8
Distributed lock protocol 2 5 3 26 12
Learning switch 2 5 11 18 3
Database chain replication 4 13 11 35 7
Chord ring maintenance 1 13 35 46 4

Figure 14. Protocols verified interactively with Ivy. S is the
number of sorts in the model. RF is the number of relations
and function symbols in the model. C is the size of the initial
set of conjectures, measured by the total number of literals
that appear in the formulas. I is the size of the final inductive
invariant (also measured by total number of literals). G is the
number of CTI’s and generalizations that took place in the
interactive search for the inductive invariant.

to construct the strongest inductive invariant in this class. This
was insufficient to prove safety, however. We took the abstract
state at the point the safety failure occurred as our attempted
inductive invariant, and used Ivy’s interaction methods to
diagnose the proof failure and correct the invariant. An
interesting aspect of this proof is that, while Zave’s proof
uses the transitive closure operator in the invariant (and
thus is outside any known decidable logic) we were able to
interactively infer a suitable universally quantified inductive
invariant.

5.2 Results & Discussion
Next, we evaluate Ivy’s effectiveness. We begin, in Figure 14
by quantifying model size, size of the inductive invariant
discovered and the number of CTIs generated when modeling
the protocols described above. As can be seen, across a range
of protocols, modeled with varying numbers of sorts and
relation and function symbols, Ivy allowed us to discover
inductive invariants in a modest number of interactive steps
(as indicated by the number of CTIs generated in column G).
However, Ivy is highly interactive and does not cleanly lend
itself to performance evaluation (since the human factor is
often the primary bottleneck). We therefore present here some
observations from our experience using Ivy as an evaluation
into its utility.

Modeling Protocols in Ivy Models in Ivy are written in an
extended version of RML. Since, RML and Ivy are restricted
to accepting code that can be translated into EPR formulas,
they force some approximation on the model. For example,
in the database commit protocol, expressing a constraint
requiring that every subtransaction reads or writes at least one
row is impossible in EPR, and we had to overapproximate to
allow empty subtransactions.

Bounded Verification Writing out models is notoriously
error prone. We found Ivy’s bounded verification stage to be

invaluable while debugging models, even when we bounded
ourselves to a relatively small number of steps (typically 3 –
9). Ivy displays counterexamples found through bounded ver-
ification using the same graphical interface as is used during
inductive invariant search. We found this graphical represen-
tation of the counterexample made it easier to understand
modeling bugs and greatly sped up the process of debugging
a model.

Finding Inductive Invariants In our experience, using a
graphical representation to select an upper bound for general-
ization was simple and the ability to visually see a concrete
counterexample allowed us to choose a much smaller partial
structure. In many cases we found that once a partial structure
had been selected, automatic generalization quickly found
the final conjecture accepted by the user.

Additionally, in some cases the conjectures suggested by
Ivy were too strong, and indicated that our modeling excluded
valid system behaviors. For example, when modeling the
database example we initially used assume’s that were too
strong. We detected this when we saw Ivy reporting that a
conjecture that seemed bogus is true even for a high number
of transitions. After fixing the model, we could reuse work
previously done, as many conjectures remained invariant after
the fix.

Comparing safety verification in Ivy to Coq and Dafny
The lock server protocol is taken from [28], and thus allows
some comparison of the safety verification process in Ivy to
Coq and the Verdi framework. The size and complexity of
the protocol description in Ivy is similar to Verdi, and both
comprise of approximately 50 lines of code. When verifying
safety with Verdi, the user is required to manually think of
the inductive invariant, and then prove its inductiveness using
Coq. For this protocol, [28] reports a proof that is approxi-
mately 500 lines long. With Ivy, the inductive invariant was
found after 8 iterations of user guided generalizations, which
took us less then an hour. Note that with Ivy, there is no need
to manually prove that the invariant is inductive, as this stage
is fully automated.

The distributed lock protocol is taken from [8], which
allows a comparison with Dafny and the IronFleet framework.
This protocol took us a few hours to verify with Ivy. Verifying
this protocol with Dafny took the authors of [8] a few days,
when a major part of the effort was manually coming up with
the inductive invariant [24]. Thus, for this protocol, the help
Ivy provides in finding the inductive invariant significantly
reduces the verification effort.

In both cases we are comparing the substantial part of the
proof, which is finding and proving the inductive invariant.
There are some differences in the encoding of this problem,
however. For example, we use a totally ordered set where the
Coq version of the lock server example uses a list. From the
Coq version, executable code can be extracted, whereas we
cannot currently do this from the Ivy version.



Overall Thoughts We believe Ivy makes it easier for users
to find inductive invariants, and provides a guided experience
through this process. This is in contrast to the existing model
for finding inductive invariants, where users must come up
with the inductive invariant by manual reasoning.

6. Related Work
The idea of using decidable logics for program verification is
quite old. For example, Klarlund et al. used monadic sec-
ond order (MSO) logic for verification in the Mona sys-
tem [9]. This approach has been generalized in the STRAND
logic [22]. Similar logics could be used in the methodology
we propose. However, EPR has the advantage that it does not
restrict models to have a particular structure (for example a
tree or list structure). Moreover as we have seen there are sim-
ple and effective heuristics for generalizing a counterexample
model to an EPR formula. Finally, the complexity of EPR is
relatively low (exponential compared to non-elementary) and
it is implemented in efficient provers such as Z3.

Various techniques have been proposed for solving the pa-
rameterized model checking problem (PMCP). Some achieve
decidability by restricting the process model to specialized
classes that have cutoff results [7] or can be reduced to well-
structured transition systems (such as Petri nets) [1]. Such
approaches have the advantages of being fully automated
when they apply. However, they have high complexity and do
not fail visibly. This and the restricted model classes make it
difficult to apply these methods in practice.

There are also various approach to the PMCP based
on abstract interpretation. A good example is the Invisible
Invariants approach [27]. This approach attempts to produce
an inductive invariant by generalizing from an invariant of a
finite-state system. However, like other abstract interpretation
methods, it has the disadvantage of not failing visibly.

The kind of generalization heuristic we use here is also
used in various model checking techniques, such IC3 [2]. A
generalization of this approach called UPDR can automat-
ically synthesize universal invariants [17]. The method is
fragile, however, and we were not successful in applying it to
the examples verified here. Our goal in this work is to make
this kind of technique interactive, so that user intuition can
be applied to the problem.

There are also many approaches based on undecidable log-
ics that provide varying levels of automation. Some examples
are proof assistants such as Coq that are powerful enough to
encode all of mathematics but provide little automation, and
tools such as Dafny [19] that provide incomplete verification
condition checking. The latter class of tools provide greater
automation but do not fail visibly. Because of incompleteness
they can produce incorrect counterexample models, and in
the case of a true counterexample to induction they provide
little feedback as to the root cause of the proof failure.

7. Conclusion
We have presented Ivy — a tool for interactively verifying
safety of infinite-state systems. Ivy is based on two key in-
sights. First, the modeling language should be designed to
permit effective abstract specification and yet allow decid-
able invariant checking using satisfiability solvers. Second,
invariant generation is fundamentally based on generalization,
which should be a collaborative process between the human
user and automated mechanisms. Ivy has many other features
not discussed here, including abstract interpretation, support
for modular refinement proofs, test generation and extraction
of executable implementations.

We hope that Ivy will become a useful tool for system
builders and designers. We are encouraged by our initial
experience in protocols like chain replication, where the
designer did not initially know what safety properties should
be satisfied or how to formally model the protocol. We found
the graphical interface to be extremely valuable as a proof
interaction tool. In the case of the Chord protocol, it also led
us to a simplified proof in the unbounded setting.

Although we focused on EPR in this paper, the methodol-
ogy of generating inductive invariants by interactive gener-
alization from CTIs is more general. It depends only on the
following three properties of the modeling language and the
class of conjectures: (i) decidability of bounded verification
— checking if a conjecture is true after k transitions, (ii) de-
cidability of checking inductiveness of a candidate conjecture
set, and (iii) the ability to graphically represent conjectures
in a way that is intuitive for system developers, and allows
them to graphically define generalizations. RML together
with universal conjectures satisfy these properties. We hope
that our methodology will also be applied in other verification
settings where these properties can be satisfied.
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