

 FastDTW: Toward Accurate Dynamic Time Warping in
Linear Time and Space

Stan Salvador and Philip Chan
Dept. of Computer Sciences

Florida Institute of Technology
Melbourne, FL 32901

{ssalvado, pkc}@cs.fit.edu

ABSTRACT
The dynamic time warping (DTW) algorithm is able to find the
optimal alignment between two time series. It is often used to
determine time series similarity, classification, and to find
corresponding regions between two time series. DTW has a
quadratic time and space complexity that limits its use to only
small time series data sets. In this paper we introduce FastDTW,
an approximation of DTW that has a linear time and space
complexity. FastDTW uses a multilevel approach that recursively
projects a solution from a coarse resolution and refines the
projected solution. We prove the linear time and space
complexity of FastDTW both theoretically and empirically. We
also analyze the accuracy of FastDTW compared to two other
existing approximate DTW algorithms: Sakoe-Chuba Bands and
Data Abstraction. Our results show a large improvement in
accuracy over the existing methods.

Keywords
dynamic time warping, time series

1. INTRODUCTION
Motivation. Dynamic time warping (DTW) is a technique that
finds the optimal alignment between two time series if one time
series may be “warped” non-linearly by stretching or shrinking it
along its time axis. This warping between two time series can
then be used to find corresponding regions between the two time
series or to determine the similarity between the two time series.
Dynamic time warping is often used in speech recognition to
determine if two waveforms represent the same spoken phrase. In
a speech waveform, the duration of each spoken sound and the
interval between sounds are permitted to vary, but the overall
speech waveforms must be similar. In addition to speech
recognition, dynamic time warping has also been found useful in
many other disciplines [8], including data mining, gesture
recognition, robotics, manufacturing, and medicine. Dynamic
time warping is commonly used in data mining as a distance
measure between time series. An example of how one time series
is “warped” to another is shown in Figure 1.

In Figure 1, each vertical line connects a point in one time series
to its correspondingly similar point in the other time series. The
lines actually have similar values on the y-axis but have been
separated so the vertical lines between them can be viewed more
easily. If both of the time series in Figure 1 were identical, all of
the lines would be straight vertical lines because no warping
would be necessary to ‘line up’ the two time series. The warp
path distance is a measure of the difference between the two time

series after they have been warped together, which is measured by
the sum of the distances between each pair of points connected by
the vertical lines in Figure 1. Thus, two time series that are
identical except for localized stretching of the time axis will have
DTW distances of zero.

Time
Figure 1. A warping between two time series.

Despite the effectiveness of the dynamic time warping algorithm,
it has an O(N2) time and space complexity that limits its
usefulness to small time series containing no more than a few
thousand data points. More details of the dynamic time warping
algorithm are contained in Section 2.1.

Problem. We desire to develop a dynamic time warping
algorithm that is linear in both time and space complexity and can
find a warp path between two time series that is nearly optimal.

Approach. In this paper we introduce the FastDTW algorithm,
which is able to find an accurate approximation of the optimal
warp path between two time series. The FastDTW algorithm
avoids the brute-force dynamic programming approach of the
standard DTW algorithm by using a multilevel approach. The
time series are initially sampled down to a very low resolution. A
warp path is found for the lowest resolution and “projected” onto
an incrementally higher resolution time series. The projected
warp path is refined and projected again to yet a higher resolution.
The process of refining and projecting is continued until a warp
path is found for the full resolution time series.

Contributions. Our main contribution is the introduction of the
FastDTW algorithm, which is an accurate approximation of DTW
that runs in linear time and space. We prove the O(N) time and
space complexity both theoretically and empirically. We also
empirically demonstrate that FastDTW produces an accurate
minimum-distance warp path between two time series than is
nearly optimal (standard DTW is optimal, but has a quadratic time
and space complexity). In addition to the FastDTW algorithm, we
evaluate other existing approximate DTW algorithms, and
compare their accuracy on a large and diverse group of time series
data sets.

Organization. The next section describes the standard dynamic
time warping algorithm and existing approaches to speed it up.
Section 3 provides a detailed explanation of our FastDTW
algorithm. Section 4 discusses experimental evaluations of the
FastDTW algorithm based on accuracy, and time/space
complexity, and Section 5 summarizes our study.

2. RELATED WORK

2.1 Dynamic Time Warping (DTW)
A distance measurement between time series is needed to
determine similarity between time series and for time series
classification. Euclidean distance is an efficient distance
measurement that can be used. The Euclidian distance between
two time series is simply the sum of the squared distances from
each nth point in one time series to the nth point in the other. The
main disadvantage of using Euclidean distance for time series data
is that its results are very unintuitive. If two time series are
identical, but one is shifted slightly along the time axis, then
Euclidean distance may consider them to be very different from
each other. Dynamic time warping (DTW) was introduced [11] to
overcome this limitation and give intuitive distance measurements
between time series by ignoring both global and local shifts in the
time dimension.

Problem Formulation. The dynamic time warping problem is
stated as follows: Given two time series X, and Y, of lengths |X|
and |Y|,

Yj

Xi

yyyyY

xxxxX

,,,,,

,,,,,

21

21

KK

KK

=

=

construct a warp path W

YXKYXwwwW K +<≤=),max(,,, 21 K

where K is the length of the warp path and the kth element of the
warp path is

),(jiwk =

where i is an index from time series X, and j is an index from time
series Y. The warp path must start at the beginning of each time
series at w1 = (1, 1) and finish at the end of both time series at wK

= (|X|, |Y|). This ensures that every index of both time series is
used in the warp path. There is also a constraint on the warp path
that forces i and j to be monotonically increasing in the warp path,
which is why the lines representing the warp path in Figure 1 do
not overlap. Every index of each time series must be used. Stated
more formally:

1,1),(),,(1 +≤′≤+≤′≤′′== + jjjiiijiwjiw kk

The optimal warp path is the warp path is the minimum-distance
warp path, where the distance of a warp path W is

∑=
=

=
Kk

k
kjki wwDistWDist

1

),()(

Dist(W) is the distance (typically Euclidean distance) of warp path
W, and Dist(wki, wkj) is the distance between the two data point

indexes (one from X and one from Y) in the kth element of the
warp path.

DTW Algorithm. A dynamic programming approach is used to
find this minimum-distance warp path. Instead of attempting to
solve the entire problem all at once, solutions to sub-problems
(portions of the time series) are found, and used to repeatedly find
solutions to a slightly larger problem until the solution is found
for the entire time series. A two-dimensional |X| by |Y| cost matrix
D, is constructed where the value at D(i, j) is the minimum-
distance warp path that can be constructed from the two time
series X’=x1,...,xi and Y’=y1,...,yj. The value at D(|X|, |Y|) will
contain the minimum-distance warp path between time series X
and Y. Both axes of D represent time. The x-axis is the time of
time series X, and the y-axis is the time of time series Y. Figure 2
D shows an example of a cost matrix and a minimum-distance
warp path traced through it from D(1, 1) to D(|X|, |Y|).

1

1

|X|

|Y|

i

j

Time Series X

T
im

e
S

er
ie

s
Y

T
im

e

Time Series X

Time
Figure 2. A cost matrix with the minimum-distance warp path

traced through it.

The cost matrix and warp path in Figure 2 are for the same two
time series shown in Figure 1. The warp path is W = {(1,1), (2,1),
(3,1), (4,2), (5,3), (6,4), (7,5), (8,6), (9,7), (9,8), (9,9), (9,10),
(10,11), (10,12), (11,13), (12,14), (13,15), (14,15), (15,15),
(16,16)}. If the warp path passes through a cell D(i, j) in the cost
matrix, it means that the ith point in time series X is warped to the
jth point in time series Y. Notice that where there are vertical
sections of the warp path, a single point in time series X is warped
to multiple points in time series Y, and the opposite is also true
where the warp path is a horizontal line. Since a single point may
map to multiple points in the other time series, the time series do
not need to be of equal length. If X and Y were identical time
series, the warp path through the matrix would be a straight
diagonal line.

To find the minimum-distance warp path, every cell of the cost
matrix must be filled. The rationale behind using a dynamic
programming approach to this problem is that since the value at
D(i, j) is the minimum warp distance of two time series of lengths
i and j, if the minimum warp distances are already known for all

slightly smaller portions of that time series that are a single data
point away from lengths i and j, then the value at D(i, j) is the
minimum distance of all possible warp paths for time series that
are one data point smaller than i and j, plus the distance between
the two points xi and yj. Since the warp past must either be
incremented by one or stay the same along the i and j axes, the
distances of the optimal warp paths one data point smaller than
lengths i and j are contained in the matrix at D(i-1, j), D(i, j-1),
and D(i-1, j-1). So the value of a cell in the cost matrix is:

),1,(),,1(min[),(),(−−+= jiDjiDjiDistjiD
)]1,1(−− jiD

The warp path to D(i, j) must pass through one of those three grid
cells, and since the minimum possible warp path distance is
already known for them, all that is needed is to simply add the
distance of the current two points to the smallest one. Since this
equation determines the value of a cell in the cost matrix by using
the values in other cells, the order that they are evaluated in is
very important. The cost matrix is filled one column at a time
from the bottom up, from left to right as depicted in Figure 3.

i ii

j j j

Figure 3. The order that the cost matrix is filled.

After the entire matrix is filled, a warp path must be found from
D(1, 1) to D(|X|, |Y|). The warp path is actually calculated in
reverse order starting at D(|X|, |Y|). A greedy search is performed
that evaluates cells to the left, down, and diagonally to the
bottom-left. Whichever of these three adjacent cells has the
smallest value is added to the beginning of the warp path found so
far, and the search continues from that cell. The search stops
when D(1, 1) is reached.

Complexity of DTW. Time and Space complexity of the DTW is
easy to determine. Each cell in the |X| by |Y| cost matrix is filled
exactly once, and each cell is filled in constant time. This yields
both a time and space complexity of |X| by |Y|, which is O(N2) if
N=|X|=|Y|. The quadratic space complexity is particularly
prohibitive because memory requirements are in the terabyte
range for time series containing only 177,000 measurements. A
linear space-complexity implementation of the DTW algorithm is
possible by only keeping the current and previous columns in
memory as the cost matrix is filled from left to right (see Figure
3). By only retaining two columns at any one time, the optimal
warp distance between the two time series can be determined.
However it is not possible to reconstruct the warp path between
these two time series because the information required to calculate
the warp path is thrown away with the discarded columns. This is
not a problem if only the distance between two time series is
required, but applications that find corresponding regions between
time series [14] or merge time series together [1][3] require the
warp path to be found.

2.2 Speeding up Dynamic Time Warping
The quadratic time and space complexity of DTW creates the need
for methods to speed up dynamic time warping. The methods
used make DTW faster fall into three categories:

1) Constraints – Limit the number of cells that are
evaluated in the cost matrix.

2) Data Abstraction – Perform DTW on a reduced
representation of the data.

3) Indexing – Use lower bounding functions to reduce the
number of times DTW must be run during time series
classification or clustering.

Constraints are widely used to speed up DTW. Two of the most
commonly used constraints are the Sakoe-Chuba Band [13] and
the Itakura Parallelogram [4], which are shown in Figure 4.

Figure 4. Two constraints: Sakoe-Chuba Band (left) and an

Itakura Parallelogram (right), both have a width of 5.

The shaded areas in Figure 4 are the cells of the cost matrix that
are filled in by the DTW algorithm for each constraint. The width
of each shaded area, or window, is specified by a parameter.
When constraints are used, the DTW algorithm finds the optimal
warp path through the constraint window. However, the globally
optimal warp path will not be found if it is not entirely inside the
window. Using constraints speeds up DTW by a constant factor,
but the DTW algorithm is still O(N2) if the size of the input
window is a function of the length of the input time series.
Constraints work well in domains where the optimal warp path is
expected to be close to a linear warp and passes through the cost
matrix diagonally in a relatively straight line. Constraints work
poorly if time series are of events that start and stop at radically
different times because the warp path can stray very far from a
linear warp and nearly the entire cost matrix must be evaluated to
find the optimal warp path.

Data abstraction speeds up the DTW algorithm by running DTW
on a reduced representation of the data [2][9]. The left side of
Figure 5 shows a full-resolution cost matrix for which a
minimum-distance warp path must be found. Rather than running
the DTW algorithm on the full resolution (1/1) cost matrix, the
time series are reduced in size to make the number of cells in the
cost matrix more manageable. A warp path is found for the
lower-resolution time series and is mapped back to the full
resolution cost matrix.

1/51/1 1/1

Figure 5. Speeding up DTW by data abstraction.

The result is that DTW is sped up by a large constant factor, but
the algorithm still runs in O(N2) time and space. Obviously, the
warp distance that is calculated between the two time series
becomes increasingly inaccurate as the level of abstraction
increases. Projecting the lower resolution warp path to the full
resolution usually creates a warp path that is far from optimal
because even IF the optimal warp path actually passes through the
low-resolution cell, projecting the warp path to the higher
resolution ignores local variations in the warp path that can be
very significant.

Indexing uses lower-bounding functions to prune out the number
of times DTW needs to be run for certain tasks such as clustering
a set of time series or finding the time series that is most similar to
a given time series [6][10]. Indexing significantly speeds up
many DTW applications by reducing the number of times DTW is
run, but does not speed up the actual DTW algorithm.

Our FastDTW algorithm uses ideas from both the constraints and
data abstraction categories. Using a combination of both
overcomes many limitations of using either method individually,
and yields an algorithm that is O(N) in both time and space.

3. APPROACH
The multilevel approach that FastDTW uses is inspired by the
multilevel approach used for graph bisection [5]. Graph bisection
is the task of splitting a graph into roughly equal portions, such
that the sum of the edges that would be broken is as small as
possible. Efficient and accurate algorithms exist for small graphs,
but for large graphs, the solutions found are typically far from
optimal. A multilevel approach can be used to find the optimal
solution for a small graph, and then repeatedly expand the graph
and “fix” the pre-existing solution for the slightly larger problem.
A multilevel approach works well if a large problem is difficult to
solve all at once, but partial solutions can effectively be refined at
different levels of resolution. The dynamic time warping problem
can also be solved with a multilevel approach. Our FastDTW
algorithm uses the multilevel approach and is able to find an
accurate warp path in linear time and space.

3.1 FastDTW Algorithm
The FastDTW algorithm uses a multilevel approach with three
key operations:

1) Coarsening – Shrink a time series into a smaller time
series that represents the same curve as accurately as
possible with fewer data points.

2) Projection – Find a minimum-distance warp path at a
lower resolution, and use that warp path as an initial

guess for a higher resolution’s minimum-distance warp
path.

3) Refinement – Refine the warp path projected from a
lower resolution through local adjustments of the warp
path.

Coarsening reduces the size (or resolution) of a time series by
averaging adjacent pairs of points. The resulting time series is a
factor of two smaller than the original time series. Coarsening is
run several times to produce many different resolutions of the
time series. Projection takes a warp path calculated at a lower
resolution and determines what cells in the next higher resolution
time series the warp path passes through. Since the resolution is
increasing by a factor of two, a single point in the low-resolution
warp path will map to at least four points at the higher resolution
(possibly >4 if |X|≠|Y|). This projected path is then used as a
heuristic during solution refinement to find a warp path at the
higher resolution. Refinement finds the optimal warp path in the
neighborhood of the projected path, where the size of the
neighborhood is controlled by the radius parameter.

Standard dynamic time warping (DTW) is an O(N2) algorithm
because every cell in the cost matrix must be filled to ensure an
optimal answer is found, and the size of the matrix grows
quadratically with the size of the time series. In the multilevel
approach, the cost matrix is only filled in the neighborhood of the
path projected from the previous resolution. Since the length of
the warp path grows linearly with the size of the input time series,
the multilevel approach is an O(N) algorithm.

The FastDTW algorithm first uses coarsening to create all of the
resolutions that will be evaluated. Figure 6 shows four
resolutions that are created when running the FastDTW algorithm
on the time series that were previously used in Figures 1 and 2.
The standard DTW algorithm is run to find the optimal warp path
for the lowest resolution time series. This lowest resolution warp
path is shown in the left of Figure 6. After the warp path is found
for the lowest resolution, it is projected to the next higher
resolution. In Figure 6, the projection of the warp path from a
resolution of 1/8 is shown as the heavily shaded cells at 1/4
resolution.

1/8 1/4 1/2 1/1

Figure 6. The four different resolutions evaluated during a

complete run of the FastDTW algorithm.

To refine the projected path, a constrained DTW algorithm is run
with the very specific constraint that only cells in the projected
warp path are evaluated. This will find the optimal warp path
through the area of the warp path that was projected from the
lower resolution. However, the entire optimal warp path may not
be contained within projected path. To increase the chances of
finding the optimal solution, there is a radius parameter that
controls the additional number of cells on each side of the
projected path that will also be evaluated when refining the warp
path. In Figure 6, the radius parameter is set to 1. The cells
included during warp path refinement due to the radius are lightly

shaded. Once the warp path is refined at the 1/4 resolution, that
warp path is projected to the 1/2 resolution, expanded by a radius
of 1, and refined again. Finally, the warp path is projected to the
full resolution (1/1) matrix in Figure 6. The projection is
expanded by the radius and refined one last time. This refined
warp path is the output of the algorithm.

Notice that the warp path found by the FastDTW algorithm in
Figure 6 is the optimal warp path that was found by the standard
DTW in Figure 2. However, FastDTW only evaluated the shaded
cells, while DTW evaluates all of the cells in the cost matrix.
FastDTW evaluated 4+16+44+100=164 cells at all resolutions,
while DTW evaluates all 235 (162) cells. This increase in
efficiency is not very significant for his small problem, especially
considering the overhead of creating all four resolutions.
However, the number of cells that FastDTW evaluates scales
linearly with the length of the time series, while DTW always
evaluates N2 cells (if both time series are of length N). FastDTW
scales linearly because the width of the path through the matrix
that is being evaluated is constant at all resolutions.

The example in Figure 6 finds the optimal warp path, but the
FastDTW algorithm is not guaranteed to always find a warp path
that is optimal. However, the path found is usually very close to
optimal. The larger the value of the radius parameter, the more
accurate the warp path will be. If the radius parameter is set to be
as large as one of the input time series, then FastDTW generalizes
to the DTW algorithm (optimal but O(N2)). The accuracy of
FastDTW using different settings for the radius parameter will be
demonstrated in Section 4.

The pseudocode for the FastDTW algorithm is shown Figure 7.
The input to the algorithm is two time series, and the radius
parameter. The output of FastDTW is a warp path and the
distance between the two time series along that warp path. Line 2
determines the minimum length of a time series at the lowest
resolution. This size is dependent on the radius parameter and
determines the smallest possible resolution size for which
decreasing the resolution further would be pointless because full
dynamic time warping would need to be calculated at more than
one resolution.

FastDTW has a straightforward recursive implementation. The
base case is when one of the input time series has a length less
than minTSsize. For the base case, the algorithm simply returns
the result of the standard DTW algorithm. The recursive case has
three main steps. First, two new lower-resolution time series are
created that have half as many points as the input time series
(coarsening). This is performed by lines 17-18 in Figure 7.
Next, a low resolution path is found for the coarsened time series
(lines 20-21) and projected to a higher resolution (lines 23-25).
This projected path is also expanded by radius cells to create a
search window that will be passed to a constrained version of the
DTW algorithm that only evaluates the cells in the search window
(line 27). The constrained DTW algorithm refines the warp path
that was projected form the lower resolution. The result of this
refinement is then returned.

Figure 7. The FastDTW algorithm.

The execution of the FastDTW algorithm repeatedly runs lines
17-18 in recursive calls to lower resolutions are made by line 21.
This creates multiple resolutions until the base case is reached
(line 8). The base case is executed only a single time, and
afterwards lines 23-27 are executed for each recursive call (or
resolution) on the stack.

Next, we will provide a theoretical analysis of FastDTW based on
time and space complexity.

Time Complexity of FastDTW. To simplify the calculations we
will assume that the two full-resolution time series X and Y are
both of length N. All analysis will be performed on worst-case
behavior.

The number of cells in the cost matrix that are filled by FastDTW
in a single resolution is equal the number of cells in the projected
warp path and any other cells within radius (denoted as r in the
rest of this analysis to save space) cells away from the projected
path. The worst case, a straight diagonal projected warp path is
depicted in Figure 8.

Function FastDTW()
Input: X – a TimeSeries of length |X|
 Y – a TimeSeries of length |Y|

 radius – distance to search outside of the projected
warp path from the previous resolution
when refining the warp path

Output: 1) A min. distance warp path between X and Y
 2) The warped path distance between X and Y

 1| // The min size of the coarsest resolution.
 2| Integer minTSsize = radius+2
 3|
 4| IF (|X|≤minTSsize OR |Y|≤minTSsize)
 5| {
 6| // Base Case: for a very small time series run
 7| // the full DTW algorithm.
 8| RETURN DTW(X, Y)
 9| }
10| ELSE
11| {
12| // Recursive Case: Project the warp path from
13| // a coarser resolution onto the current
14| // current resolution. Run DTW only along
15| // the projected path (and also ‘radius’ cells
16| // from the projected path).
17| TimeSeries shrunkX = X.reduceByHalf()
18| TimeSeries shrunkY = Y.reduceByHalf()
19|
20| WarpPath lowResPath =
21| FastDTW(shrunkX,shrunkY, radius)
22|
23| SearchWindow window =
24| ExpandedResWindow(lowResPath, X, Y,
25| radius)
26|
27| RETURN DTW(X, Y, window)
28| }

1/2 1/1

Figure 8. Maximum (worst-case) number of cells evaluated for

a radius of 1.

The lightly shaded cells in Figure 8 are the 2Nr cells on each side
of the projected path (heavily shaded cells), which itself has 3N
cells. The projected path therefore has the following maximum
number of cells at a resolution with two time series containing N
points:

)34()2(23 +=+ rNNrN [1]

The length of the time series at each resolution (res) follows the
sequence (N points are contained in the original time series):

L,
2

,
2

,
2

,
2

,
2 432

0

NNNN
N

N
res

res
res

=



 ∞=

=

 [2]

Therefore, the number of cells evaluated at all resolutions is
(combine Equations 1 and 2) L++++++=+∑∞

=

)34(
2

)34(
2

)34()34(
2 2

0

r
N

r
N

rNr
N

res
res

[3]

The series in Equation 3 is very similar to the series

2
2

1

2

1

2

1

2

1
1

2

1
432

0

=+++++=∑∞
=

L
res

res
 [4]

Multiplying Equation 4 by Equation 1 yields

)34(2)34(
2

)34(
2

)34(
2

+=++++++ rNr
N

r
N

rN L [5]

Since the sequence in Equation 5 is identical to the sequence in
Equation 3, the number of cells evaluated at all resolutions is

Total number of cells filled =)34(2 +rN [6]

In addition to the number of cells calculated there is also time
complexity for creating the coarser resolutions and determining
the warp path by tracing through the matrix.

The time complexity needed to create the resolutions is
proportional to the number of points in all of the resolutions,
which is the series in Equation 2. The solution of Equation 2 is
obtained by multiplying Equation 4 by N, which yields 2N. Since
multiple resolutions of both time series must be created, 2N is
multiplied by two to get the final time complexity.

Time to create all resolutions = N4 [7]

The time complexity needed to trace the warp path back through a
matrix is measured by the length of the warp path. A resolution
containing N points has a length of 2N in the worst case (N is the
best case for a diagonal line). Multiplying Equation 4 by 2N
gives the worst-case length of all warp paths added together from
every resolution:

Time to trace warp paths = N4 [8]

Adding Equations 6, 7, and 8 gives the total worst-cast time
complexity of FastDTW

FastDTW time complexity =)148(+rN [9]

which is O(N) if r (radius) is a small constant value.

Space Complexity of FastDTW. The space complexity of
FastDTW consists of the space required to store the resolutions
(other than the full-resolution input time series), the maximum
amount of cells that are used at any one time in a cost matrix, and
the size of the warp path stored In memory. The space complexity
of storing all extra resolutions other than the full resolution for
one input time series is Equation 2 without the first them, which is
2N-N=N. For both input time series the space complexity is

Space of resolutions (other that full resolution) = N2 [10]

The space complexity of the cost matrix is the maximum size cost
matrix that is created for the full resolution matrix. The number
of cells in the matrix is Equation 1

Space of cost matrix =)34(+rN [11]

The space complexity of storing the warp path is equal to the
longest warp path that can exist at full resolution. If the warp path
traces the perimeter of the cost matrix, then the length of that path
will be

Space complexity of storing the warp path = N2 [12]

And adding Equations 10, 11, and 12 gives the total worst-cast
space complexity of

FastDTW space complexity =)74(+rN [13]

which is also O(N) if r (radius) is a small (<N) constant value.

4. EMPIRICAL EVALUATION
The goal of this evaluation is demonstrate the efficiency and
accuracy of the FastDTW algorithm on a wide range of time series
data sets. To ensure reproducibility, all datasets and algorithms
used in this evaluation can be found online at “http://cs.fit.edu/ ~pkc/FastDTW/”. This evaluation will first demonstrate the
accuracy of the FastDTW algorithm and will then empirically
verify its linear time complexity.

4.1 Accuracy of FastDTW
4.1.1 Procedures and Criteria
The accuracy of an approximate DTW algorithm can be measured
by determining how much the approximate warp path distance
differs from the optimal warp path distance. The error of an

approximate DTW algorithm, such as our FastDTW algorithm, is
calculated by the following equation:

Error of a warp path = 100×−
toptimalDis

toptimalDisapproxDist [14]

If the DTW algorithm finds a warp path with a distance equal to
the optimal warp path distance, then there is zero error. The
optimal warp path distance can be found by running the standard
DTW algorithm. The error of a warp path will always be ≥0%
(because optimalDist is never larger than approxDist) and can
exceed 100% if the distance of the approximate warp path is more
than double the optimal distance.

The FastDTW algorithm is evaluated against two other existing
approximate DTW algorithms: Sakoe-Chuba bands and data
abstraction. Sakoe-Chuba bands (see left side of Figure 4)
constrain the DTW algorithm to only evaluate a specified radius
away from a linear warp within the cost matrix. Itakura
Parallelograms (see right side of Figure 4) are not evaluated
because, for a given radius, a band will always find a warp path
equal to or better than that of the parallelogram. This is because
the parallelogram constraint is a subset of the band constraint.
The data abstraction DTW algorithm used in this evaluation first
samples the data, and then runs the standard DTW algorithm to
find a warp path on the sampled data. This warp path is then
projected to the full resolution as previously shown in Figure 5.

The radius parameter performs a similar function for all three
algorithms. It expands the region of the cost matrix searched from
an initial “guess”. For bands, the initial guess is a linear warp.
For data abstraction, it is the projected warp path from the
sampled data, and for FastDTW it is the projected warp path from
the previous resolution. Each algorithm will be run with multiple
radius parameters on a wide range of data sets.

All three algorithms (FastDTW, bands, and data abstraction) are
only being evaluated based on accuracy in this section. However,
care has been taken to ensure that the time each algorithm requires
to execute is similar for the same radius. The data abstraction
algorithm is made O(N) by sampling the data down to N points

before performing quadratic time warping (O(N 2) = O(N)). All
three algorithms evaluate roughly the same number of cells in the
cost matrix for any particular radius. FastDTW has some
overhead for evaluating previous resolutions, and data abstraction
has overhead for running standard DTW on the sampled time
series. However, all three algorithms are linear with respect to the
length of the input time series, and the number of cells evaluated
for a given radius does not differ by more than a power of two of
for any pair of algorithms.

The time series data sets used to evaluate the accuracy of the
FastDTW algorithm include very similar data sets that are from
the same domain, and dissimilar data sets that are from different
domains. Both types of data are used to show that FastDTW
works well on a wide range of data, regardless of the similarity or

characteristics of the time series. Dynamic time warping is most
frequently used to compare the similarity between time series, so
it is likely that the majority of time series that are compared are
similar and from the same domain. However, very dissimilar time
series are also evaluated to ensure that the approximate FastDTW
algorithm works well when warping two time series that do not
share common features. The accuracy of each DTW algorithm is
measured on three groups of data:

1) Random – 990 time warps between 45 time series from
different domains (eeg, random walk, earthquake, speech,
tide, etc.). The average length is 1128 points.

2) Trace - 10,900 time warps between 200 time series data
sets. The Gun domain contains 4 classes that simulate
instrumentation failure in a nuclear power plant. All time
series have a length of 275 points.

3) Gun – 10,900 time warps between 200 time series data
sets. The Gun domain contains 2 classes, with 100 time
series of a gun being drawn from a holster and 100 time
series of a gun being pointed. All time series have a
length of 151 points.

All data sets used in this evaluation were obtained from the UCR
Time Series Data Mining Archive and are publicly available [7].
Each algorithm and group of data is also run multiple times with
the following settings for the radius parameter: 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 20, and 30. For a given algorithm, group of data, and
radius, the average error of all possible warp paths between time
series in the group are recorded.

4.1.2 Results and Analysis
The FastDTW algorithm is very accurate for all three groups of
data that it was tested on. FastDTW has an error of only 19.2% to
0.0%, depending on the value of the radius parameter. For all
algorithms, the error decreases as the radius parameter increases.
However, FastDTW converges to 0% error much faster than the
other two algorithms. A summary of the results for several radius
settings is contained in Table 1.

Table 1. Average error of three the algorithms at selected
radius values (errors of the 3 groups of data are averaged).

radius
0 1 10 20 30

FastDTW 19.2% 8.6% 1.5% 0.8% 0.6%

Abstraction 983.3% 547.9% 6.5% 2.8% 1.8%

Band 2749.2% 2385.7% 794.1% 136.8% 9.3%

Table 1 shows the average error for all three algorithms over all
three test cases, when run with the radius set to 0, 1, 10, 20, and
30. FastDTW has a small amount of error for all radius settings,
and begins to approach 0% error when radius is set at or above
10. Data abstraction is inaccurate for small radius values, but
begins to be reasonably accurate when run with larger radius
settings. The band algorithm is very inaccurate for all radius
settings except for 30.

Accuracy of FastDTW, Bands, and Data Abstraction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30radius

E
rr

or

FastDTW-Random FastDTW-Trace FastDTW - Gun
Abstraction-Random Abstraction-Trace Abstraction-Gun
Band-Random Band-Trace Band-Gun

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 5 10 15 20 25 30radius

E
rr

or

FastDTW-Random FastDTW-Trace FastDTW - Gun
Abstraction-Random Abstraction-Trace Abstraction-Gun
Band-Random Band-Trace Band-Gun

Figure 9. Accuracy of FastDTW compared to Bands and Data Abstraction. The top figure’s y-axis is 0%-100% and the bottom

figure’s y-axis is 0%-10%.

Data abstraction is inaccurate (500-1000% error) for small radius
settings because it blindly projects the warp path from a sampled
time series onto a full resolution cost matrix. This projection may
be “in the neighborhood” of a near-optimal warp path, but it fails
to take into consideration any local variation in the warp path that
is obscured by sampling. Local variations in the warp path can
have a huge impact on the accuracy of a warp path. Increasing the
radius setting (which is not part of the original data abstraction
algorithm, it is introduced in this paper), can make it rather
accurate because this begins to adjust the warp path to cover local
variations. However, the accuracy is still worse than FastDTW
for a given radius because FastDTW projects the “neighborhood”
of the near-optimal warp path from the previous resolution in
several small steps rather than a single large step.

Bands can only have good results if a near-optimal warp path is
entirely contained within radius cells from a linear warp. When
bands are used with a radius of 0, and the two time series are of
equal length, it generalizes to Euclidean distance...which is a
notoriously inaccurate similarity measure for time series [15]. A
slight misalignment between the two time series being warped can
cause a very large amount of error in the warp path.

The accuracy of each algorithm on the different groups of data is
displayed in Figure 9.

In Figure 9, the x-axis is the radius parameter used, and the y-axis
is the error of the tested algorithm. Each of the 9 lines is a

combination between the three algorithms and the three groups of
data sets. The FastDTW algorithm curves are solid lines, data
abstraction curves are dotted lines, and band curves are dashed
lines. The three groups of data can be identified by the shape of
the markers on the curves. Round markers are used on curves
using Random data, triangle markers are for the Trace data, and
square markers are for the Gun data.

The three solid lines at the bottom of Figure 9 are the error curves
for FastDTW on all three groups of data. The error is small for all
three lines, meaning that the accuracy FastDTW is not effected
very much by the characteristics or similarity of the input time
series. FastDTW is significantly more accurate than the other two
methods when the radius parameter is set to small values. When
the radius parameter is larger, the abstraction method begins to
approach the accuracy of FastDTW. However, FastDTW was
always at least 2-3 times more accurate than abstraction in our
experiments.

The three dotted Abstraction lines all have large errors for small
radius values, but converge to less than 5% error on all data sets
as the radius is increased to 30. This is due to the previously
stated problem of the projected warp path being close to a near-
optimal solution, but not taking local variations of the warp path
into account. Abstraction does perform reasonably well if the
radius is increased to at least 10. The ability of data abstraction to
locally refine its projected path within the neighborhood of radius
cells is not a part of the original algorithm, and is introduced in

this paper. The run-time of the original data abstraction algorithm
is the same as our improved implementation when using a radius
of 0, which has a very large average error of 983.3% over the
three groups of data used in this evaluation.

The three dashed Band lines all have errors greater than 100% (as
high as 7225%) for small radius values, and converge very slowly
to 0% error as the radius increases. Band performs best on the
random data because if two time series have almost nothing in
common, an arbitrary warp path probably has a warp path
distance that is not significantly much different from the
minimum-distance or maximum-distance warp paths. The other
two groups of data are data sets in a similar domain, which means
that the optimal warp distance can be very small. Due to the way
that error is calculated in Equation 14, if the optimal warp
distance is very small, then the potential error can be very large
because the optimal warp distance is the denominator of a
fraction. The Band approach on the Trace data group has
extremely poor accuracy because the time series contain events
that are shifted in time, and bands only work well if a near-
optimal warp path exists that is close to a linear warp. The Gun
data group also does not work very well with the Band algorithm,
which is surprising since the time series seem to be reasonably in
phase with each other (near a linear warp).

4.2 Efficiency
4.2.1 Procedures and Criteria
The efficiency of the FastDTW algorithm will be measured in
seconds, with respect to the length of the input time series, and
compared to the standard DTW algorithm. The FastDTW
algorithm will be run with the radius parameter set to: 0, 20, and
100 over a range of varying-length time series. The data sets used
are synthetic data sets of a single period of a sine wave with
Gaussian noise inserted. Only the lengths of the time series are
significant because the shape of the time series has little
significance on the run-time of either algorithm. The lengths of
the time series evaluated vary from 10 to 150,000.

The standard DTW algorithm used in this evaluation is the linear-
space implementation that only retains the last two columns of the
cost matrix. If the standard DTW implementation is used, the test
machine runs out of memory when the length of the time series
exceeds ~3,000. The FastDTW algorithm is implemented as
described in this paper except that the cost matrix is filled using
secondary storage if the lengths of the time series grow so large
that the number of cells in the search window is larger than can fit
into main memory. Both algorithms are implemented in Java, and
the runtime is measured using the system clock on a machine with
minimal background processes running.

4.2.2 Results and Analysis
The FastDTW algorithm was significantly faster than the standard
DTW algorithm for all but the smallest time series. FastDTW is
50 to 150 times faster than standard DTW (using radius values of

0 and 100 respectively) when the time series have lengths of
150,000 points. A sample of the results of the FastDTW
algorithm can be seen in Table 2.

Table 2. Execution time (in seconds) of DTW and FastDTW on
time series of four different lengths.

Length of Time Series
100 1,000 10,000 100,000

DTW 0.02 0.92 57.45 7969.59
FastDTW
(radius=0)

0.01 0.02 0.38 67.94

FastDTW
(radius=100)

0.02 0.06 8.42 207.19

In Table 2, FastDTW and DTW have similar execution times for
the 100 point time series. For the larger 10,000 and 100,000
point time series FastDTW runs much more quickly than DTW.
But execution time for the 1,000 point time series is both faster
and slower than DTW, depending on the radius parameter. The
exact length at which FastDTW runs quicker than DTW depends
on the radius parameter. Figure 10 shows the critical region
where one algorithm is faster than the other depending on the
radius parameter.

Execution Time of FastDTW on Small Time Series

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600 700 800 900 1000
Length of Time Series

T
im

e
(s

ec
o

n
d

s)

DTW

FastDTW (radius=100)

FastDTW (radius=20)

FastDTW (radius=0)

Figure 10. The efficiency of FastDTW and DTW on small time

series.

The FastDTW algorithm, with a radius of 100, takes longer to run
than DTW until the size of the time series exceeds approximately
900 points. However, with a radius of 0 or 20, the DTW
algorithm is never faster than the FastDTW algorithm for small
time series, and once the length of the time series exceed 200-300
points, FastDTW becomes the more efficient algorithm. For small
time series it makes more sense to use the DTW algorithm rather
than FastDTW. The FastDTW algorithm is not significantly faster
(and possibly a little slower) than DTW for small time series, and
DTW is guaranteed to always find the optimal warp path.
However, for large time series, the quadratic time complexity
becomes prohibitive.

Execution Time of FastDTW on Large Time Series

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000
Length of Time Series

Ti
m

e
(s

ec
on

ds
)

DTW

FastDTW (radius=100)

FastDTW (radius=20)
FastDTW (radius=0)

0

10

1000

100000

1,000 10,000 100,000 1,000,000
Length of Time Series

Ti
m

e
(s

ec
on

ds
)

DTW

FastDTW (radius=100)

FastDTW (radius=20)

FastDTW (radius=0)

Figure 11. The eficiency of FastDTW and DTW on large time series. The top figure is scaled normally, and the bottom figure has

log-log scaling.

The full results, using radius values of 0, 20, and 100 on time
series ranging in length from 10 to 200,000 are shown in Figure
11. In Figure 11, the y-axis is the execution time and the x-axis is
the length of the time series. The two graphs in Figure 11 are two
views of the same data. The top graph is scaled normally, and the
bottom graph has log-log scaling. Looking at the top graph, it is
immediately obvious that the time complexity of DTW is much
greater than that of FastDTW. DTW has an exponential curve,
while all three FastDTW curves are approximately straight lines.
In the log-scaled graph at the bottom of Figure 11, the three
curves of FastDTW can be viewed more easily. The radius
parameter increases the execution of FastDTW by a constant
factor, which is why the three FastDTW lines seem to be
converging on the log-scaled graph as length of the time series
increases. The constant factor difference between them gets less
significant as the length of the time series increases.

In Section 3.1, we proved theoretically that the FastDTW
algorithm was O(N). Using the empirical data in Figure 11, the
equation of the FastDTW curve with a radius of 100 is

7337.0001.000000001.0 2 −+= xxy

This coefficient of the squared term is very small, and it seems
like the linear term is the most significant term in the
equation...which would empirically prove that the FastDTW
algorithm is O(N). However, since the values for x are so large,
the squared term actually dominates the equation when
x>100,000. The reason for this slight sub-linearity in the

algorithm occurs when the number of cells being filled in the
search window will not fit into main memory, and must be saved
to the disk. Writing the cells to the disk can be performed in
linear time. However, when reading the cells from the random-
access file to construct a warp path, reading individual non-
sequential cells from the disk cannot be performed in linear time.
Larger time series create larger swap files, which require the disk
head to move further to perform each random-access read
operation. In other words, the number of cells in the cost matrix
that must be filled/read is linear with respect to the length of the
time series. So the algorithm is O(N), but the implementation is
not quite O(N) for large time series when the entire search
window will not fit into main memory.

5. CONCLUDING REMARKS
In this paper we introduced the FastDTW algorithm, a linear and
accurate approximation of dynamic time warping (DTW).
FastDTW uses a multilevel approach that recursively projects a
warp path from a coarser resolution to the current resolution and
refines it. While the quadratic time and space complexity of DTW
has limited its use to only the smallest time series data sets,
FastDTW can be run on much larger data sets. FastDTW is an
order of magnitude faster than DTW, and it also compliments
existing indexing methods that speed up time series similarity
search and classification.

Our theoretical and empirical analysis showed that FastDTW has
a linear time and space complexity. Expirical results have also

shown that FastDTW is accurate when warping both similar and
dissimilar time series. With a radius of only 1, FastDTW had an
average error of 8.6%, and increasing the radius to 20 lowers the
error to under 1%. FastDTW’s accuracy was compared to two
existing methods, Data Abstraction and Sakoe-Chiba Bands, and
was found to be far more accurate than either approach when
using small radius values. FastDTW’s solutions also always
approached zero error (optimal warp path) with smaller radius
values than the other two methods. An additional contribution of
this paper is demonstrating how to apply the refinement portion of
the FastDTW algorithm to the Data Abstraction approximate
DTW algorithm. Doing so increased the accuracy of Data
Abstraction by more than 100-fold in our evaluation with a radius
of only 10.

The main limitation of the FastDTW algorithm is that it is an
approximate algorithm and is not guaranteed to find the optimal
solution (although it very often does). If for some reason a
problem requires optimal warp paths to be found. Future work
will look into increasing the accuracy of FastDTW. Possibilities
to increase the accuracy of FastDTW include changing the step
size (magnitute of the resolution change) between resolutions and
evaluating search algorithms to guide search during the
refinement step rather than simple expanding the search window
in both directions.

6. REFERENCES.
[1] Abdulla, W., D. Chow, and G. Sin, Cross-words reference

template for DTW-based speech recognition systems, in
Proc. IEEE TENCON, Bangalore, India, 2003.

[2] Chu, S., E. Keogh, D. Hart & Michael Pazzani. Iterative
Deepening Dynamic Time Warping for Time Series. In
Proc. of the Second SIAM Intl. Conf. on Data Mining.
Arlington, Virginia, 2002.

[3] Gupta, L., D. Molfese, R. Tammana & P. Simos. Nonlinear
Alignment and Averaging for Estimating the Evoked
Potential. In IEEE Transactions on Biomedical
Engineering, vol. 43, no. 4, pp. 346-356, 1996.

[4] Itakura, F. Minimum Prediction Residual Principle Applied
to Speech Recognition. In IEEE Trans. Acoustics, Speech,
and Signal Proc. vol. ASSP-23, pp 52-72, 1975.

[5] Karypis, G., R. Aggarwal, V. Kumar & S. Shekhar.
Multilevel Hypergraph Partitioning: Application in VLSI
Domain. In Design Automation Conl, pp. 526-530.
Anaheim, California, 1997.

[6] Keogh, E. Exact Indexing of Dynamic Time Warping. In
VLDB, pp. 406-417. Hong Kong, China, 2002.

[7] Keogh, E. and T. Folias. The UCR Time Series Data Mining
Archive [http://www.cs.ucr.edu/~eamonn/TSDMA/
index.html], Riverside, CA, University of California –
Computer Science and Engineering Department, 2002

[8] Keogh, E. & M. Pazzani. Derivative Dynamic Time
Warping. In Proc. of the First Intl. SIAM Intl. Conf. on Data
Mining, Chicago, Illinois, 2001.

[9] Keogh, E. & M. Pazzani. Scaling up Dynamic Time
Warping for Datamining Applications. In Proc. of the Sixth
ACM SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining, pp.285-289. Boston, Massachuseetts, 2000.

[10] Kim, S., S. Park & W. Chu. An Index-based Approach for
Similarity Search Supporting Time Warping in Large
Sequence Databases. In Proc. 17th Intl. Conf. on Data
Engineering, pp. 607-614. Heidelberg, Germany, 2001.

[11] Kruskall, J. & M. Liberman. The Symmetric Time Warping
Problem: From Continuous to Discrete. In Time Warps,
String Edits and Macromolecules: The Theory and Practice
of Sequence Comparison, pp. 125-161, Addison-Wesley
Publishing Co., Reading, Massachusetts, 1983

[12] Ratanamahatana, C. & E. Keogh. Making Time-series
Classification More Accurate Using Learned Constraints. In
Proc of SIAM Intl. Conf. on Data Mining, pp. 11-22. Lake
Buena Vista, Florida, 2004.

[13] Sakoe, H. & S. Chiba. (1978) Dynamic programming
algorithm optimization for spoken word recognition. IEEE
Trans. Acoustics, Speech, and Signal Proc., Vol. ASSP-26.

[14] Salvador, Stan. Learning States for Detecting Anomalies in
Time Series. Master’s Thesis, CS-2004-05, Dept. of
Computer Sciences, Florida Institute of Technology, 2004.

[15] Vlachos, M., G. Kollios, & D. Gunopulos. Discovering
Similar Multidimensional Trajectories. In Proc. 18th Intl.
Conf. on Data Engineering, pp. 673-684, San Jose,
California, 2002.

