FastDTW: Toward Accurate Dynamic Time Warping in

Linear Time and Space

Stan Salvador and Philip Chan
Dept. of Computer Sciences
Florida Institute of Technology
Melbourne, FL 32901

{ssalvado, pkc}@cs.fit.edu

ABSTRACT

The dynamic time warping (DTW) algorithm is ablefiod the
optimal alignment between two time series. It fiem used to
determine time series similarity, classificationndato find
corresponding regions between two time series. D&% a
quadratic time and space complexity that limitsute to only
small time series data sets. In this paper wedltte FastDTW,
an approximation of DTW that has a linear time asphce
complexity. FastDTW uses a multilevel approach thaursively
projects a solution from a coarse resolution anfihes the
projected solution. We prove the linear time anghce
complexity of FastDTW both theoretically and emgafly. We
also analyze the accuracy of FastDTW compared to dtiner
existing approximate DTW algorithms: Sakoe-Chulzend® and
Data Abstraction. Our results show a large impneet in
accuracy over the existing methods.

Keywords

dynamic time warping, time series

1. INTRODUCTION
Motivation.
finds the optimal alignment between two time seifesne time
series may be “warped” non-linearly by stretchimgsbrinking it

along its time axis. This warping between two tisgies can
then be used to find corresponding regions betvieeriwo time
series or to determine the similarity between the time series.
Dynamic time warping is often used in speech reitign to

determine if two waveforms represent the same sppkease. In
a speech waveform, the duration of each spokendsand the
interval between sounds are permitted to vary, thet overall
speech waveforms must be similar. In addition peesh
recognition, dynamic time warping has also beemdbuseful in
many other disciplines [8], including data miningesture
recognition, robotics, manufacturing, and medicin®ynamic
time warping is commonly used in data mining asistadce
measure between time series. An example of howiomeseries
is “warped” to another is shown in Figure 1.

In Figure 1, each vertical line connects a poinbire time series
to its correspondingly similar point in the othane series. The
lines actually have similar values on theaxis but have been
separated so the vertical lines between them carielned more
easily. If both of the time series in Figure 1 ev@entical, all of
the lines would be straight vertical lines becange warping
would be necessary to ‘line up’ the two time seri€khe warp
path distance is a measure of the difference betwheetwo time

Dynamic time warping (DTW) is a technique that

series after they have been warped together, whicteasured by
the sum of the distances between each pair of poorinected by
the vertical lines in Figure 1. Thus, two timeiserthat are
identical except for localized stretching of theei axis will have
DTW distances of zero.

Time
Figure 1. A warping between two time series.

Despite the effectiveness of the dynamic time wagglgorithm,

it has an O time and space complexity that limits its
usefulness to small time series containing no ntbem a few
thousand data points. More details of the dynaimie warping
algorithm are contained in Section 2.1.

Problem. We desire to develop a dynamic time warping
algorithm that is linear in both time and space plaxity and can
find a warp path between two time series that &lgeptimal.

Approach. In this paper we introduce the FastDTW algorithm,
which is able to find an accurate approximationtted optimal
warp path between two time series. The FastDTVWrihgn
avoids the brute-force dynamic programming approattthe
standard DTW algorithm by using a multilevel apmtoa The
time series are initially sampled down to a vemy lesolution. A
warp path is found for the lowest resolution ancbfpcted” onto
an incrementally higher resolution time series. e Tirojected
warp path is refined and projected again to yaghér resolution.
The process of refining and projecting is continuedil a warp
path is found for the full resolution time series.

Contributions. Our main contribution is the introduction of the
FastDTW algorithm, which is an accurate approxioratef DTW
that runs in linear time and space. We prove tfid) @me and
space complexity both theoretically and empiricallyVe also
empirically demonstrate that FastDTW produces aourate
minimum-distance warp path between two time setiem is
nearly optimal (standard DTW is optimal, but hagiadratic time
and space complexity). In addition to the FastDalgbrithm, we
evaluate other existing approximate DTW algorithnand
compare their accuracy on a large and diverse gobtime series
data sets.

Organization. The next section describes the standard dynamic
time warping algorithm and existing approachesgees it up.
Section 3 provides a detailed explanation of oustbaw
algorithm. Section 4 discusses experimental etialus of the
FastDTW algorithm based on accuracy, and time/space
complexity, and Section 5 summarizes our study.

2. RELATED WORK
2.1 Dynamic Time Warping (DTW)

A distance measurement between time series is deé¢de
determine similarity between time series and faneti series
classification. Euclidean distance is an efficiedistance
measurement that can be used. The Euclidian disthatween
two time series is simply the sum of the squarediadices from
eachnth point in one time series to thth point in the other. The
main disadvantage of using Euclidean distancerioe series data
is that its results are very unintuitive. If twiomé series are
identical, but one is shifted slightly along thendi axis, then
Euclidean distance may consider them to be veffgréifit from
each other. Dynamic time warping (DTW) was introgi [11] to
overcome this limitation and give intuitive distanmeasurements
between time series by ignoring both global anallsbifts in the
time dimension.

Problem Formulation. The dynamic time warping problem is
stated as follows: Given two time serdésandY, of lengths|X|
and Y],

X:xl,xz,...,xi,...nﬂx‘
Y: yllyZ""’yj""’y‘Y‘
construct a warp paty

W=w, W, W max(X|,[Y]) s K <[X|+]Y|

whereK is the length of the warp path and #feelement of the
warp path is

w, = (@, J)

wherei is an index from time serie§ andj is an index from time
seriesY. The warp path must start at the beginning ohdane
series atv; = (1, 1) and finish at the end of both time seriesat

= (X, ™). This ensures that every index of both timéeseis
used in the warp path. There is also a constaairthe warp path
that forced andj to be monotonically increasing in the warp path,
which is why the lines representing the warp patfrigure 1 do
not overlap. Every index of each time series rbestised. Stated
more formally:

W = (5 1) Wiy =0 17)

The optimal warp path is the warp path is the mimndistance
warp path, where the distance of a warp paiis

i<i'<i+l j<j'gj+1

Dist(W) = kZ:IfDist(wki s W)

Dist(W) is the distance (typically Euclidean distanceafp path
W, and Dist(wyg, W) is the distance between the two data point

indexes (one fronX and one fromY) in the K" element of the
warp path.

DTW Algorithm. A dynamic programming approach is used to
find this minimum-distance warp path. Instead térapting to
solve the entire problem all at once, solutionsstie-problems
(portions of the time series) are found, and use@peatedly find
solutions to a slightly larger problem until thdugmn is found
for the entire time series. A two-dimensiondll}y ly] cost matrix
D, is constructed where the value i, j) is the minimum-
distance warp path that can be constructed fromte time
seriesX'=xy,...% andY=yy,...y;. The value aD(|X|, v]) will
contain the minimum-distance warp path between tegesX
andY. Both axes oD represent time. Theaxis is the time of
time seriesX, and they-axis is the time of time seri& Figure 2
D shows an example of a cost matrix and a minimwtadce
warp path traced through it froB(1, 1) toD(|X|, |Y])-

> AL
73
2 b
@ |
n
<} _
E
'_ -
,g)
B
- 1
1 i [X
//_/_Tim;serieisx
L 1 1 1 1 1 1 | | 1 | 1 | 1 1 |
Time

Figure 2. A cost matrix with the minimum-distance varp path
traced through it.

The cost matrix and warp path in Figure 2 are lfier $ame two
time series shown in Figure 1. The warp patWis {(1,1), (2,1),
(3.1), (4,2), (5.3), (6,4), (7,5), (8,6), (9,7)..88 (9,9), (9,10),
(10,11), (10,12), (11,13), (12,14), (13,15), (14,1%15,15),
(16,16)}. If the warp path passes through a bél] j) in the cost
matrix, it means that thi&" point in time serieX is warped to the
j™ point in time seriesY. Notice that where there are vertical
sections of the warp path, a single point in timeesX is warped
to multiple points in time serie¥, and the opposite is also true
where the warp path is a horizontal line. Sins@ngle point may
map to multiple points in the other time serieg time series do
not need to be of equal length. XfandY were identical time
series, the warp path through the matrix would bestraight
diagonal line.

To find the minimum-distance warp path, every adlithe cost
matrix must be filled. The rationale behind usiagdynamic
programming approach to this problem is that sitheevalue at
D(i, j) is the minimum warp distance of two time serie€kengths
i andj, if the minimum warp distances are already knowndil

slightly smaller portions of that time series tha¢ a single data
point away from lengths andj, then the value ab(i, j) is the
minimum distance of all possible warp paths foretigeries that
are one data point smaller thaandj, plus the distance between
the two pointsx, andy;. Since the warp past must either be
incremented by one or stay the same along thied | axes, the
distances of the optimal warp paths one data pmimller than
lengthsi andj are contained in the matrix B(i-1, j), D(i, j-1),
andD(i-1, j-1). So the value of a cell in the cost matrix is:

D(i, j) = Dist(i, j) + min[D(i -1, j),D(, j - 1),
D(i -1 j-1)]

The warp path t®(i, j) must pass through one of those three grid
cells, and since the minimum possible warp pathadie is
already known for them, all that is needed is topdy add the
distance of the current two points to the smaltes. Since this
equation determines the value of a cell in the owtix by using
the values in other cells, the order that they eva&luated in is
very important. The cost matrix is filled one oolu at a time
from the bottom up, from left to right as depictad-igure 3.

2.2 Speeding up Dynamic Time Warping

The quadratic time and space complexity of DTW tag#he need
for methods to speed up dynamic time warping. Tiethods
used make DTW faster fall into three categories:

1) Constraints — Limit the number of cells that are

evaluated in the cost matrix.

2) Data Abstraction — Perform DTW on a reduced
representation of the data.
3) Indexing — Use lower bounding functions to reduce the

number of times DTW must be run during time series
classification or clustering.

Constraints are widely used to speed up DTW. Tivithe® most
commonly used constraints are the Sakoe-Chuba BEgjdand
the Itakura Parallelogram [4], which are shown iigufFe 4.

1 = 1 =
i i

Figure 3. The order that the cost matrix is filled.

1
I
i

After the entire matrix is filled, a warp path mum found from
D(1, 1) toD(]X|, I]). The warp path is actually calculated in
reverse order starting BX(|X|, Iv]). A greedy search is performed
that evaluates cells to the left, down, and diatipn® the
bottom-left. Whichever of these three adjacentscdibs the
smallest value is added to the beginning of theovgath found so
far, and the search continues from that cell. $barch stops
whenD(1, 1) is reached.

Complexity of DTW. Time and Space complexity of the DTW is
easy to determine. Each cell in ti¢ By | cost matrix is filled
exactly once, and each cell is filled in constamiet This yields
both a time and space complexity Xf by I¥], which is OK?) if
N=[X|=lY]. The quadratic space complexity is particularly
prohibitive because memory requirements are in tnabyte
range for time series containing only 177,000 mesasants. A
linear space-complexity implementation of the DTWoaithm is
possible by only keeping the current and previoakirans in
memory as the cost matrix is filled from left tght (see Figure
3). By only retaining two columns at any one tirtteg optimal
warp distance between the two time series can berrdeed.
However it is not possible to reconstruct the wpgth between
these two time series because the information reduo calculate
the warp path is thrown away with the discardedicwis. This is
not a problem if only the distance between two tisegies is
required, but applications that find correspondiegjons between
time series [14] or merge time series together3[1tpquire the
warp path to be found.

Figure 4. Two constraints: Sakoe-Chuba Band (lefthind an
Itakura Parallelogram (right), both have a width of 5.

The shaded areas in Figure 4 are the cells ofdbernatrix that
are filled in by the DTW algorithm for each constta The width

of each shaded area, or window, is specified byamrpeter.
When constraints are used, the DTW algorithm fitias optimal

warp path through the constraint window. Howetlee, globally

optimal warp path will not be found if it is nottéely inside the
window. Using constraints speeds up DTW by a @orisfactor,

but the DTW algorithm is still @) if the size of the input
window is a function of the length of the input &nseries.
Constraints work well in domains where the optimalp path is
expected to be close to a linear warp and passesdi the cost
matrix diagonally in a relatively straight line. o@straints work
poorly if time series are of events that start atap at radically
different times because the warp path can stray farfrom a

linear warp and nearly the entire cost matrix naesevaluated to
find the optimal warp path.

Data abstraction speeds up the DTW algorithm byingnDTW
on a reduced representation of the data [2][9].e it side of
Figure 5 shows a full-resolution cost matrix for igfh a
minimum-distance warp path must be found. Ratha&n tunning
the DTW algorithm on the full resolution (1/1) casatrix, the
time series are reduced in size to make the nuwibezlls in the
cost matrix more manageable. A warp path is fofordthe
lower-resolution time series and is mapped backth® full
resolution cost matrix.

1/5

— 'l

Figure 5. Speeding up DTW by data abstraction.

The result is that DTW is sped up by a large camdfactor, but
the algorithm still runs in @) time and space. Obviously, the
warp distance that is calculated between the twe tseries
becomes increasingly inaccurate as the level oftradi®n
increases. Projecting the lower resolution warth ga the full
resolution usually creates a warp path that isfiam optimal
because evelf the optimal warp path actually passes through the
low-resolution cell, projecting the warp path toe thhigher
resolution ignores local variations in the warphp#tat can be
very significant.

Indexing uses lower-bounding functions to prune thetnumber
of times DTW needs to be run for certain tasks saghlustering
a set of time series or finding the time series ihanost similar to
a given time series [6][10]. Indexing significanttpeeds up
many DTW applications by reducing the number oe8nDTW is
run, but does not speed up the actual DTW algorithm

Our FastDTW algorithm uses ideas from both the wams and
data abstraction categories. Using a combinatiénbath
overcomes many limitations of using either methdividually,
and yields an algorithm that is l)(in both time and space.

3. APPROACH

The multilevel approach that FastDTW uses is irspiby the
multilevel approach used for graph bisection [&raph bisection
is the task of splitting a graph into roughly egpattions, such
that the sum of the edges that would be brokersisraall as
possible. Efficient and accurate algorithms efastsmall graphs,
but for large graphs, the solutions found are wfbicfar from

optimal. A multilevel approach can be used to fihd optimal
solution for a small graph, and then repeatedlyaagpthe graph
and “fix” the pre-existing solution for the sligitlarger problem.
A multilevel approach works well if a large problésndifficult to

solve all at once, but partial solutions can effety be refined at
different levels of resolution. The dynamic timaming problem
can also be solved with a multilevel approach. ®astDTW
algorithm uses the multilevel approach and is abldind an

accurate warp path in linear time and space.

3.1 FastDTW Algorithm

The FastDTW algorithm uses a multilevel approacthwhree
key operations:

1) Coarsening — Shrink a time series into a smaller time
series that represents the same curve as accuaately
possible with fewer data points.

2) Projection — Find a minimum-distance warp path at a

lower resolution, and use that warp path as aralinit

guess for a higher resolution’s minimum-distancepwa
path.

3) Refinement — Refine the warp path projected from a
lower resolution through local adjustments of therpv

path.

Coarsening reduces the size (or resolution) of a time sebies
averaging adjacent pairs of points. The resultimg series is a
factor of two smaller than the original time serig8oarsening is
run several times to produce many different resmhst of the
time series. Projection takes a warp path calculated at a lower
resolution and determines what cells in the neghédii resolution
time series the warp path passes through. Sirceeolution is
increasing by a factor of two, a single point ie tbw-resolution
warp path will map to at least four points at thghler resolution
(possibly >4 if XiY]). This projected path is then used as a
heuristic during solution refinement to find a waspth at the
higher resolution. Refinement finds the optimal warp patim the
neighborhood of the projected path, where the size of the
neighborhood is controlled by thadius parameter.

Standard dynamic time warping (DTW) is anN®)(algorithm
because every cell in the cost matrix must bedfitie ensure an
optimal answer is found, and the size of the magiows
quadratically with the size of the time series.tie multilevel
approach, the cost matrix is only filled in thegidorhood of the
path projected from the previous resolution. Sitieelength of
the warp path grownearly with the size of the input time series,
the multilevel approach is an)(algorithm.

The FastDTW algorithm first uses coarsening to teredl of the
resolutions that will be evaluated. Figure 6 shofesir

resolutions that are created when running the Haat@lgorithm

on the time series that were previously used inuféig 1 and 2.
The standard DTW algorithm is run to find the ogtirwarp path
for the lowest resolution time series. This lowestolution warp
path is shown in the left of Figure 6. After tharw path is found
for the lowest resolution, it is projected to thexn higher
resolution. In Figure 6, the projection of the pigrath from a
resolution of 1/8 is shown as the heavily shadelts a 1/4

resolution.

1/8 = 1/4 = 1/‘2 =-»> 1{1

Figure 6. The four different resolutions evaluatedduring a
complete run of the FastDTW algorithm.

To refine the projected path, a constrained DTV@#@tigm is run
with the very specific constraint that only celis the projected
warp path are evaluated. This will find the opfimarp path
through the area of the warp path that was projected from the
lower resolution. However, the entire optimal warp path may not
be contained within projected path. To increase dhances of
finding the optimal solution, there is radius parameter that
controls theadditional number of cells on each side of the
projected path that will also be evaluated whemirgg the warp
path. In Figure 6, theadius parameter is set to 1. The cells
included during warp path refinement due torthgius are lightly

shaded. Once the warp path is refined at the elgdlution, that
warp path is projected to the 1/2 resolution, exigalnby aradius

of 1, and refined again. Finally, the warp patprojected to the
full resolution (1/1) matrix in Figure 6. The pegtion is
expanded by theadius and refined one last time. This refined
warp path is the output of the algorithm.

Notice that the warp path found by the FastDTW @igm in
Figure 6 is the optimal warp path that was foundhsy standard
DTW in Figure 2. However, FastDTW only evaluathd shaded
cells, while DTW evaluates all of the cells in thest matrix.
FastDTW evaluated 4+16+44+100=164 cells at all lte®ms,
while DTW evaluates all 235 (36 cells. This increase in
efficiency is not very significant for his smallginem, especially
considering the overhead of creating all four retohs.
However, the number of cells that FastDTW evaluaeales
linearly with the length of the time series, whlE'W always
evaluated\? cells (if both time series are of lendth. FastDTW
scales linearly because the width of the path djnothe matrix
that is being evaluated is constant at all resmhsti

The example in Figure 6 finds the optimal warp pdtht the
FastDTW algorithm is not guaranteed to always @inglarp path
that is optimal. However, the path found is usuaéry close to
optimal. The larger the value of thadius parameter, the more
accurate the warp path will be. If thedius parameter is set to be
as large as one of the input time series, therDHAStgeneralizes
to the DTW algorithm (optimal but ®f). The accuracy of
FastDTW using different settings for thadius parameter will be
demonstrated in Section 4.

The pseudocode for the FastDTW algorithm is shovgurg 7.
The input to the algorithm is two time series, ahd radius
parameter. The output of FastDTW is a warp patt tre
distance between the two time series along thgb wath. Line 2
determines the minimum length of a time serieshat lowest
resolution. This size is dependent on thdius parameter and
determines the smallest possible resolution size \idnich
decreasing the resolution further would be poistlescause full
dynamic time warping would need to be calculatedhate than
one resolution.

FastDTW has a straightforward recursive impleméonat The
base case is when one of the input time seriesaHangth less

thanminTSsize. For the base case, the algorithm simply returns

the result of the standard DTW algorithm. The reiwe case has
three main steps. First, two new lower-resolutiore series are
created that have half as many points as the itimg series
(coarsening). This is performed by lines 17-18 in Figure 7.
Next, a low resolution path is found for the coaesktime series
(lines 20-21) andprojected to a higher resolution (lines 23-25).
This projected path is also expandedrhbsglius cells to create a
search window that will be passed to a constrairezdion of the
DTW algorithm that only evaluates the cells in fesarch window
(line 27). The constrained DTW algorithrefines the warp path
that was projected form the lower resolution. Tasult of this
refinement is then returned.

Functi on Fast DTW)

X — a TimeSeries of lengtK||

Y — a TimeSeries of lengtH]|

radius— distance to search outside of the projected
warp path from the previous resolution
when refining the warp path

1) A min. distance warp path betwe¢mandY

2) The warped path distance betwéeandY

Input:

Output:

1| // The min size of the coarsest resolution.

2| Integer m nTSsize = radi us+2

3|

4] IF (| X €m nTSsi ze OR | Y| €mi nTSsi ze)
5|

6| /1 Base Case: for a very small time series run
7| /1 the full DTW algorithm.
8| RETURN DTW X, V)

9 }
10| ELSE
11 {
12| /1 Recursive Case: Project the warp path from
13| /1 acoarser resolution onto the current
14| /1 current resolution. Run DTW only along
15| /1 the projected path (and also ‘radius’ cells
16| /1 fromthe projected path).
17| Ti meSeri es shrunkX = X reduceByHal f ()
18] Ti meSeri es shrunkY = Y. reduceByHal f ()
19|
20| War pPat h | owResPath =
21| Fast DTW shrunkX, shrunkY, radi us)
22|
23| Sear chW ndow wi ndow =
24| ExpandedResW ndow(| owResPat h, X, Y,
25| radi us)
26|
27| RETURN DTW X, Y, wi ndow)
28| }

Figure 7. The FastDTW algorithm.

The execution of the FastDTW algorithm repeatedigsr lines
17-18 in recursive calls to lower resolutions ardmby line 21.
This creates multiple resolutions until the bassecs reached
(line 8). The base case is executed only a sitigle, and
afterwards lines 23-27 are executed for each reeursll (or
resolution) on the stack.

Next, we will provide a theoretical analysis of fEW based on
time and space complexity.

Time Complexity of FastDTW. To simplify the calculations we
will assume that the two full-resolution time seri andY are
both of lengthN. All analysis will be performed on worst-case
behavior.

The number of cells in the cost matrix that adedilby FastDTW
in a single resolution is equal the number of cellthe projected
warp path and any other cells withiadius (denoted as in the
rest of this analysis to save space) cells away fitee projected
path. The worst case, a straight diagonal praojeetarp path is
depicted in Figure 8.

1/2 1/1

Figure 8. Maximum (worst-case) number of cells evahted for
aradiusof 1.

The lightly shaded cells in Figure 8 are thdr 2ells on each side
of the projected path (heavily shaded cells), whisklf has B8l
cells. The projected path therefore has the fatigwmaximum
number of cells at a resolution with two time sem@ntainingN
points:

3N + 2(2Nr) = N(4r +3) [1]

The length of the time series at each resoluties) follows the
sequenceN points are contained in the original time series):

{N} NN NN

- P PTEPCEPVERS [2]
res 2 3 4
2] 2222872
Therefore, the number of cells evaluated at albltg®ns is
(combine Equations 1 and 2)

>N arez= N(4r+3)+%(4r+3)+%(4r+3)+~~~[3]

res:O2res

The series in Equation 3 is very similar to theeser
> 1 1.1 1 1
P R Y

= T 4+ +...=2 [4]
res:02res 2 22 23 24

Multiplying Equation 4 by Equation 1 yields
N (4r +3)+% (4r +3)+% (4r +3)+--- = 2N (4r +3) [9]

Since the sequence in Equation 5 is identical éoséquence in
Equation 3, the number of cells evaluated at abblegions is

Total number of cellsfilled= 2N (4r + 3) [6]

In addition to the number of cells calculated therealso time
complexity for creating the coarser resolutions aetermining
the warp path by tracing through the matrix.

The time complexity needed to create the resolstida
proportional to the number of points in all of thesolutions,
which is the series in Equation 2. The solutiorEqliation 2 is
obtained by multiplying Equation 4 by, which yields N. Since
multiple resolutions of both time series must beated, R is
multiplied by two to get the final time complexity.

Timeto create all resolutions = 4N [7]

The time complexity needed to trace the warp pattk bhrough a
matrix is measured by the length of the warp pathresolution
containingN points has a length of\2in the worst caseNis the
best case for a diagonal line). Multiplying Eqoati4 by N
gives the worst-case length of all warp paths addgdther from
every resolution:

Timeto tracewarp paths = 4N [8]

Adding Equations 6, 7, and 8 gives the total weestt time
complexity of FastDTW

FastDTW time complexity = N (8r +14) [9]

which is OQ) if r (radius) is a small constant value.

Space Complexity of FastDTW The space complexity of
FastDTW consists of the space required to storerakelutions

(other than the full-resolution input time serie)e maximum

amount of cells that are used at any one timedasa matrix, and

the size of the warp path stored In memory. Thaesmomplexity

of storing all extra resolutions other than thd fekolution for

one input time series is Equation 2 without thstfihem, which is
2N-N=N. For both input time series the space compléasity

Space of resolutions (other that full resolution) = 2N [10]

The space complexity of the cost matrix is the mmaxn size cost
matrix that is created for the full resolution ndatr The number
of cells in the matrix is Equation 1

Space of cost matrix = N (4r +3) [11]

The space complexity of storing the warp path isatédo the
longest warp path that can exist at full resolutidiithe warp path
traces the perimeter of the cost matrix, then ¢éingth of that path
will be

Space complexity of storing thewarp path = 2N [12]

And adding Equations 10, 11, and 12 gives the totabt-cast
space complexity of

FastDTW space complexity = N (4r +7) [13]

which is also Q) if r (radius) is a small (¥) constant value.

4. EMPIRICAL EVALUATION

The goal of this evaluation is demonstrate theciefficy and
accuracy of the FastDTW algorithm on a wide ranfgiinte series
data sets. To ensure reproducibility, all dataset$ algorithms
used in this evaluation can be found onlin&hditp://cs.fit.edu/
~pkc/FastDTW/”. This evaluation will first demonstrate the
accuracy of the FastDTW algorithm and will then @moplly
verify its linear time complexity.

4.1 Accuracy of FastDTW

4.1.1 Proceduresand Criteria

The accuracy of an approximate DTW algorithm camieasured
by determining how much the approximate warp pathadce
differs from the optimal warp path distance. Theoeof an

approximate DTW algorithm, such as our FastDTW wtlgm, is
calculated by the following equation:

approxDist - optimalDig
optimalDig

Error of awarp path = x100 [14]

If the DTW algorithm finds a warp path with a dista equal to
the optimal warp path distance, then there is zsror. The
optimal warp path distance can be found by runtiregstandard
DTW algorithm. The error of a warp path will alvgape>0%

(becauseoptimalDist is never larger thampproxDist) and can
exceed 100% if the distance of the approximate wath is more
than double the optimal distance.

The FastDTW algorithm is evaluated against two iothdsting
approximate DTW algorithms: Sakoe-Chuba bands dath
abstraction. Sakoe-Chuba bands (see left side iguirdé- 4)
constrain the DTW algorithm to only evaluate a #jpet radius
away from a linear warp within the cost matrix. akiara
Parallelograms (see right side of Figure 4) are endluated
because, for a giveradius, a band will always find a warp path
equal to or better than that of the parallelograhhis is because
the parallelogram constraint is a subset of thedbamnstraint.
The data abstraction DTW algorithm used in thisleation first
samples the data, and then runs the standard Dgdithim to
find a warp path on the sampled data. This wanh jE=then
projected to the full resolution as previously shaw Figure 5.

The radius parameter performs a similar function for all #re
algorithms. It expands the region of the cost imaarched from
an initial “guess”. For bands, the initial guessai linear warp.
For data abstraction, it is the projected warp pltm the
sampled data, and for FastDTW it is the projectadowath from
the previous resolution. Each algorithm will be mwith multiple
radius parameters on a wide range of data sets.

All three algorithms (FastDTW, bands, and datarabtibn) are
only being evaluated based on accuracy in thissectHowever,
care has been taken to ensure that the time egahitain requires
to execute is similar for the samadius. The data abstraction
algorithm is made @) by sampling the data down t¢N points
before performing quadratic time warping (O 2 = ON)). All
three algorithms evaluate roughly the same numbeelts in the
cost matrix for any particularadius. FastDTW has some
overhead for evaluating previous resolutions, aatg dbstraction
has overhead for running standard DTW on the samptee
series. However, all three algorithms are lineiin wespect to the
length of the input time series, and the numberedif evaluated
for a givenradius does not differ by more than a power of two of
for any pair of algorithms.

The time series data sets used to evaluate theaagcof the
FastDTW algorithm include very similar data setatthre from
the same domain, and dissimilar data sets thaframe different
domains. Both types of data are used to show FastDTW
works well on a wide range of data, regardleshefdimilarity or

characteristics of the time series. Dynamic tin@ping is most
frequently used to compare the similarity betwemetseries, so
it is likely that the majority of time series thate compared are
similar and from the same domain. However, vesgidiilar time
series are also evaluated to ensure that the appatexFastDTW
algorithm works well when warping two time seriéstt do not
share common features. The accuracy of each DD@fitim is
measured on three groups of data:

1) Random- 990 time warps between 45 time series from
different domains (eeg, random walk, earthquakegeip,
tide, etc.). The average length is 1128 points.

2) Trace- 10,900 time warps between 200 time series data
sets. The Gun domain contains 4 classes thataienul
instrumentation failure in a nuclear power plaatl time
series have a length of 275 points.

3) Gun- 10,900 time warps between 200 time series data
sets. The Gun domain contains 2 classes, withifr@0
series of a gun being drawn from a holster andtiG@
series of a gun being pointed. All time seriesehav
length of 151 points.

All data sets used in this evaluation were obtaiinech the UCR
Time Series Data Mining Archive and are publichaiable [7].
Each algorithm and group of data is also run migttpmes with
the following settings for theadius parameter: 0, 1, 2, 3, 4, 5, 6,
7, 8,9, 10, 20, and 30. For a given algorithrougrof data, and
radius, the average error of all possible warp paths betwtiime
series in the group are recorded.

4.1.2 Resultsand Analysis

The FastDTW algorithm is very accurate for all ghigroups of
data that it was tested on. FastDTW has an efronlg 19.2% to
0.0%, depending on the value of thedlius parameter. For all
algorithms, the error decreases asridus parameter increases.
However, FastDTW converges to 0% error much faten the
other two algorithms. A summary of the resultsdeveraradius
settings is contained in Table 1.

Table 1. Average error of three the algorithms at slected
radius values (errors of the 3 groups of data are averadg

radius
0 1 10 20 30
FastDTW 19.2% 8.6% 1.5% 0.89 0.6%
Abstraction 983.3% 547.9%) 6.59 2.8% 1.8%
Band 2749.2%| 2385.7% 794.1% 136.8\%0 9.3%

Table 1 shows the average error for all three #lyos over all
three test cases, when run with tiadius set to 0, 1, 10, 20, and
30. FastDTW has a small amount of error foratlius settings,
and begins to approach 0% error whedius is set at or above
10. Data abstraction is inaccurate for smmatlius values, but
begins to be reasonably accurate when run withetargdius
settings. The band algorithm is very inaccurate dt radius
settings except for 30.

Accuracy of FastDTW, Bands, and Data Abstraction

100% :
CTV \ —e— FastDTW-Random FastDTW-Trace —s—FastDTW - Gun
90% 4 \ . \ Abstraction-Random Abstraction-Trace - - - Abstraction-Gun
80% \ ! LY —e— Band-Random Band-Trace —8— Band-Gun
(]
70%
~ 60%
o
T 50%
40%
30%
20% - == ————
—_— e 1 Y
10% =
0% +— F : === *
0 5 10 radius 15 20 25 30
10% i \
\ \ —e— FastDTW-Random FastDTW-Trace —a&— FastDTW - Gun
9% * — Abstraction-Random Abstraction-Trace - - - Abstraction-Gun
8% \ \ . —eo— Band-Random Band-Trace —8— Band-Gun
()
7% -
= 6%
o
o 5%

4%
3% -
2% A
1% ~

0% T T T T T T T T T T

0 5 10 radius

15

25

Figure 9. Accuracy of FastDTW compared to Bands an®ata Abstraction. The top figure’sy-axis is 0%100% and the bottom
figure’s y-axis is 0%-10%.

Data abstraction is inaccurate (500-1000% errarsifoallradius
settings because it blindly projects the warp gaim a sampled
time series onto a full resolution cost matrix.isTprojection may
be “in the neighborhood” of a near-optimal warphpddut it fails
to take into consideration any local variationhie tvarp path that
is obscured by sampling. Local variations in therpvpath can
have a huge impact on the accuracy of a warp gattreasing the
radius setting (which is not part of the original datastaction
algorithm, it is introduced in this paper), can maik rather
accurate because this begins to adjust the walptpatover local
variations. However, the accuracy is still workart FastDTW
for a givenradius because FastDTW projects the “neighborhood”
of the near-optimal warp path from the previousohgson in
several small steps rather than a single large step

Bands can only have good results if a near-optinab path is
entirely contained withimadius cells from a linear warp. When
bands are used withradius of 0, and the two time series are of
equal length, it generalizes to Euclidean distarkich is a
notoriously inaccurate similarity measure for tisexies [15]. A
slight misalignment between the two time seriesp@iarped can
cause a very large amount of error in the warp.path

The accuracy of each algorithm on the differenugsoof data is
displayed in Figure 9.

In Figure 9, thex-axis is the radius parameter used, andythgis
is the error of the tested algorithm. Each of ¢hdines is a

combination between the three algorithms and theetgroups of
data sets. The FastDTW algorithm curves are doles, data
abstraction curves are dotted lines, and band suave dashed
lines. The three groups of data can be identifigpdhe shape of
the markers on the curves. Round markers are oseclirves
using Random data, triangle markers are for theeldata, and
square markers are for the Gun data.

The three solid lines at the bottom of Figure 9theeerror curves
for FastDTW on all three groups of data. The eis@mall for all
three lines, meaning that the accuracy FastDTWotseffected
very much by the characteristics or similarity bé&tinput time
series. FastDTW is significantly more accuratenttiee other two
methods when theadius parameter is set to small values. When
the radius parameter is larger, the abstraction method begins
approach the accuracy of FastDTW. However, FastDi&g
always at least 2-3 times more accurate than atistnain our
experiments.

The three dotted Abstraction lines all have largers for small
radius values, but converge to less than 5% error odah sets
as theradius is increased to 30. This is due to the previously
stated problem of the projected warp path beingecko a near-
optimal solution, but not taking local variationstbe warp path
into account. Abstraction does perform reasonateyl if the
radiusis increased to at least 10. The ability of dddstraction to
locally refine its projected path within the neigihhood ofradius
cells is not a part of the original algorithm, aisdntroduced in

this paper. The run-time of the original data edzdion algorithm
is the same as our improved implementation whenguaradius
of 0, which has a very large average error of 9@3@er the
three groups of data used in this evaluation.

The three dashed Band lines all have errors grézer100% (as

high as 7225%) for smalhdius values, and converge very slowly
to 0% error as theadius increases.
random data because if two time series have almoisting in

common, an arbitrary warp path probably has a waath

distance that is not significantly much differentorh the
minimum-distance or maximum-distance warp path$e dther
two groups of data are data sets in a similar doyweliich means
that the optimal warp distance can be very smalie to the way
that error is calculated in Equation 14, if the i@l warp

distance is very small, then the potential errar ba very large
because the optimal warp distance is the denominatoa

fraction. The Band approach on the Trace data pgrbas
extremely poor accuracy because the time seriemicoavents
that are shifted in time, and bands only work wela near-
optimal warp path exists that is close to a lin@arp. The Gun
data group also does not work very well with the®algorithm,
which is surprising since the time series seemetogasonably in
phase with each other (near a linear warp).

4.2 Efficiency

4.2.1 Proceduresand Criteria

The efficiency of the FastDTW algorithm will be nseaed in
seconds, with respect to the length of the inpuetseries, and
compared to the standard DTW algorithm. The Fag{DT
algorithm will be run with theadius parameter set to: 0, 20, and
100 over a range of varying-length time seriese @ata sets used
are synthetic data sets of a single period of & siave with
Gaussian noise inserted. Only the lengths of ithe teries are
significant because the shape of the time series litde
significance on the run-time of either algorithithe lengths of
the time series evaluated vary from 10 to 150,000.

The standard DTW algorithm used in this evaluaitothe linear-

space implementation that only retains the lastdalamns of the
cost matrix. If the standard DTW implementatiomused, the test
machine runs out of memory when the length of the tseries
exceeds ~3,000. The FastDTW algorithm is impleegras

described in this paper except that the cost méariitled using

secondary storage if the lengths of the time segies so large
that the number of cells in the search windowiigdathan can fit
into main memory. Both algorithms are implemeritedava, and
the runtime is measured using the system clock machine with

minimal background processes running.

4.2.2 Resultsand Analysis

The FastDTW algorithm was significantly faster thiha standard
DTW algorithm for all but the smallest time serieSastDTW is
50 to 150 times faster than standard DTW (usamjus values of

Band performs best on the

0 and 100 respectively) when the time series hawngths of
150,000 points. A sample of the results of thetag/
algorithm can be seen in Table 2.

Table 2. Execution time (in seconds) of DTW and FERTW on
time series of four different lengths.

Length of Time Series
100 1,000 | 10,000 | 100,000
DTW 0.02 092 | 57.45 | 7969.59
(Fr ZZ}E;\S’) 0.01 0.02 0.38 67.94
(rzgfsil\glo) 0.02 0.06 8.42 207.19

In Table 2, FastDTW and DTW have similar executiomes for
the 100 point time series. For the larger 10,008 200,000
point time series FastDTW runs much more quickgntTW.
But execution time for the 1,000 point time seilig$oth faster
and slower than DTW, depending on ttaglius parameter. The
exact length at which FastDTW runs quicker than Ddiggends
on theradius parameter. Figure 10 shows the critical region
where one algorithm is faster than the other deipgndn the
radius parameter.

Execution Time of FastDTW on Small Time Series

——DTW
T|—=—FastDTW (radius=100)

FastDTW (radius=20) /
—A&— FastDTW (radius=0)

o
o

o
3
,

o
o

o
3
.

Time (seconds)
o
~

o
w

o
N
L

o
e

o
o
|

0 100 200 300 400 500 600 700 800
Length of Time Series

Figure 10. The efficiency of FastDTW and DTW on sniatime
series.

900 1000

The FastDTW algorithm, with eadius of 100, takes longer to run
than DTW until the size of the time series excesmpisroximately
900 points. However, with aadius of O or 20, the DTW
algorithm is never faster than the FastDTW alganitfor small
time series, and once the length of the time sesiesed 200-300
points, FastDTW becomes the more efficient algariti~or small
time series it makes more sense to use the DTWiddgorather
than FastDTW. The FastDTW algorithm is not sigrifitly faster
(and possibly a little slower) than DTW for smath¢ series, and
DTW is guaranteed to always find the optimal warathp
However, for large time series, the quadratic tiomnplexity
becomes prohibitive.

Execution Time of FastDTWon Large Time Series

5000
—DTW
4500 1 — — FastDTW (radius=100)
@ 4000 - FastDTW (radius=20)
T 3500 - - - - FastDTW (radius=0)
3 3000
<2 2500
Q
€ 2000
'_
1500
1000
50 +—m———— ==
O*—‘/‘r—""?‘ __—_—___-'-'_"_"_'\'_'T-_':--\----------\ --------- — \--- 1
0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000
Length of Time Series
100000 5
] —DTW
— — FastDTW (radius=100)
FastDTW (radius=20)
%\1000 J— - FastDTW (radius=0)
c _ — -_— T
<} - -
(8] S : -
Q — -
2 - o
o 10 - p—— = -
E — =" T
F - S
0 ‘ NS — : N —
1,000 10,000 100,000 1,000,000

Length of Time Series

Figure 11. The eficiency of FastDTW and DTW on larg time series. The top figure is scaled normallynd the bottom figure has
log-log scaling.

The full results, usingadius values of 0, 20, and 100 on time
series ranging in length from 10 to 200,000 aremshin Figure
11. In Figure 11, thg-axis is the execution time and tk@xis is
the length of the time series. The two graphsigufe 11 are two
views of the same data. The top graph is scaletalty, and the
bottom graph has log-log scaling. Looking at thye graph, it is
immediately obvious that the time complexity of DTig/much
greater than that of FastDTW. DTW has an expoakutirve,
while all three FastDTW curves are approximatebgight lines.
In the log-scaled graph at the bottom of Figure thk three
curves of FastDTW can be viewed more easily. Tadius
parameter increases the execution of FastDTW byrsstant
factor, which is why the three FastDTW lines seem be
converging on the log-scaled graph as length oftitine series
increases. The constant factor difference betwieem gets less
significant as the length of the time series insesa

In Section 3.1, we proved theoretically that thestBaW
algorithm was QY)). Using the empirical data in Figure 11, the
equation of the FastDTW curve with a radius of 00

y = 0.0000000%* + 0.001x — 0.7337

This coefficient of the squared term is very smatid it seems
like the linear term is the most significant term the
equation...which would empirically prove that the@stbTW
algorithm is ON). However, since the values ferare so large,
the squared term actually dominates the equatiorenwh
x>100,000. The reason for this slight sub-linearity the

algorithm occurs when the number of cells beintgdilin the
search window will not fit into main memory, and shibe saved
to the disk. Writing the cells to the disk can performed in
linear time. However, when reading the cells fribra random-
access file to construct a warp path, reading idda non-
sequential cells from the disk cannot be perforineléhear time.
Larger time series create larger swap files, wheuire the disk
head to move further to perform each random-acaessl
operation. In other words, the number of cellshi@ cost matrix
that must be filled/read is linear with respecthie length of the
time series. So thalgorithm is O(N), but theimplementation is
not quite ON) for large time series when the entire search
window will not fit into main memory.

5. CONCLUDING REMARKS

In this paper we introduced the FastDTW algoritlaninear and
accurate approximation of dynamic time warping (DTW
FastDTW uses a multilevel approach that recursiyebjects a
warp path from a coarser resolution to the curresplution and
refines it. While the quadratic time and space mlexity of DTW
has limited its use to only the smallest time sefimta sets,
FastDTW can be run on much larger data sets. H>i3 an
order of magnitude faster than DTW, and it also glimments
existing indexing methods that speed up time sesigslarity
search and classification.

Our theoretical and empirical analysis showed FetDTW has
a linear time and space complexity. Expirical tsshave also

shown that FastDTW is accurate when warping battilai and
dissimilar time series. With adius of only 1, FastDTW had an
average error of 8.6%, and increasingridwius to 20 lowers the
error to under 1%. FastDTW’s accuracy was compéaoetivo
existing methods, Data Abstraction and Sakoe-CBidads, and
was found to be far more accurate than either a@mbravhen
using smallradius values.
approached zero error (optimal warp path) with smakdius
values than the other two methods. An additiowalribution of
this paper is demonstrating how to apply the refieet portion of
the FastDTW algorithm to the Data Abstraction apprate
DTW algorithm. Doing so increased the accuracy Data
Abstraction by more than 100-fold in our evaluatwith aradius
of only 10.

The main limitation of the FastDTW algorithm is thais an

approximate algorithm and is not guaranteed to firel optimal

solution (although it very often does). If for semeason a
problem requires optimal warp paths to be founditufé work

will look into increasing the accuracy of FastDTWossibilities
to increase the accuracy of FastDTW include changie step
size (magnitute of the resolution change) betwesplutions and
evaluating search algorithms to guide search durihg

refinement step rather than simple expanding tlaeckewindow
in both directions.

6. REFERENCES.

[1] Abdulla, W., D. Chow, and G. Sin, Cross-words refee
template for DTW-based speech recognition systams,
Proc. IEEE TENCON, Bangalore, India, 2003.

[2] Chu, S, E. Keogh, D. Hart & Michael Pazzani. dtae
Deepening Dynamic Time Warping for Time Series. In
Proc. of the Second SIAM Intl. Conf. on Data Mining.
Arlington, Virginia, 2002.

[3] Gupta, L., D. Molfese, R. Tammana & P. Simos. Nuedr
Alignment and Averaging for Estimating the Evoked
Potential. InEEE Transactions on Biomedical
Engineering, vol. 43, no. 4, pp. 346-356, 1996.

[4] ltakura, F. Minimum Prediction Residual Princigipplied
to Speech Recognition. I&EEE Trans. Acoustics, Speech,
and Signal Proc. vol. ASSP-23, pp 52-72, 1975.

FastDTW's solutions also always

[5] Karypis, G., R. Aggarwal, V. Kumar & S. Shekhar.
Multilevel Hypergraph Partitioning: Application MLSI
Domain. InDesign Automation Conl, pp. 526-530.
Anaheim, California, 1997.

[6] Keogh, E. Exact Indexing of Dynamic Time Warpirg.
VLDB, pp. 406-417. Hong Kong, China, 2002.

[7] Keogh, E. and T. Folias. The UCR Time Series Daitair\
Archive [http://www.cs.ucr.edu/~eamonn/TSDMA/
index.html], Riverside, CA, University of Califori-
Computer Science and Engineering Department, 2002

[8] Keogh, E. & M. Pazzani. Derivative Dynamic Time
Warping. InProc. of the First Intl. SAM Intl. Conf. on Data
Mining, Chicago, lllinois, 2001.

[9] Keogh, E. & M. Pazzani. Scaling up Dynamic Time
Warping for Datamining Applications. Froc. of the Sxth
ACM SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining, pp.285-289. Boston, Massachuseetts, 2000.

[10]Kim, S., S. Park & W. Chu. An Index-based Approfmh
Similarity Search Supporting Time Warping in Large
Sequence Databases. Aroc. 17" Intl. Conf. on Data
Engineering, pp. 607-614. Heidelberg, Germany, 2001.

[11]Kruskall, J. & M. Liberman. The Symmetric Time W@arg
Problem: From Continuous to Discrete. Time Warps,
String Edits and Macromolecules: The Theory and Practice
of Sequence Comparison, pp. 125-161, Addison-Wesley
Publishing Co., Reading, Massachusetts, 1983

[12] Ratanamahatana, C. & E. Keogh. Making Time-series
Classification More Accurate Using Learned Constsai In
Proc of SAM Intl. Conf. on Data Mining, pp. 11-22. Lake
Buena Vista, Florida, 2004.

[13] Sakoe, H. & S. Chiba. (1978) Dynamic programming
algorithm optimization for spoken word recognitiolEEE
Trans. Acoustics, Speech, and Signal Proc., VoOER6.

[14] Salvador, Stan. Learning States for Detecting Aal@a in
Time Series. Master's Thesis, CS-2004-05, Dept. of
Computer Sciences, Florida Institute of Technol@§04.

[15] Vlachos, M., G. Kollios, & D. Gunopulos. Discovegi
Similar Multidimensional Trajectories. Proc. 18" Intl.
Conf. on Data Engineering, pp. 673-684, San Jose,
California, 2002.

