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Abstract.
We consider the problem of ordering matrices to bordered lower triangular form with minimal

border width. In the context of solving systems of nonlinear equations, this translates to maximiz-
ing the number of variables eliminated by solving univariate equations before solving the remaining
system. First, a simple algorithm is presented for automatically identifying those symbolic rearrange-
ments of the individual equations that yield explicit and numerically stable eliminations of variables.
We then give a novel integer programming formulation of ordering to bordered lower triangular form
optimally. Since a high amount of permutation symmetry can cause performance problems, we de-
veloped a custom branch and bound algorithm. Based on the performance tests on the COCONUT
Benchmark, we consider the proposed branch and bound algorithm practical (a) for the purposes
of global optimization, and (b) in cases where systems with the same sparsity patterns are solved
repeatedly, and the time spent on ordering pays off.

Key words. algebraic loop, diakoptics, minimum degree ordering, sparse matrix ordering,
tearing

1. Introduction. Tearing (cf. [3, 21, 22, 38]) is the representation of a sparse
system of nonlinear equations

(1) f(x) = 0, where f : Rn 7→ Rm,

in a permuted form where most of the variables can be computed sequentially once a
small auxiliary system has been solved. More specifically, given permutation matrices
P and Q such that after the transformation

(2)

[
g
h

]
= Pf,

[
y
z

]
= Qx,

gi(y, z) = 0 can be rewritten in the equivalent explicit form

(3) yi = g̃i(y1:i−1, z)

using appropriate symbolic transformations. Equation (3) implies that the sparsity
pattern of the Jacobian of Pf is

(4) J =

[
A B
C D

]
, where A is lower triangular,

J is therefore bordered lower triangular. Hereafter, we will refer to a particular
choice of P,Q, g, h, y, and z satisfying equations (3) and (4) as an ordering. Given
an ordering, the system of equations f(x) = 0 can be written as

(5)
g(y, z) = 0
h(y, z) = 0.

The requirement (3) that gi(y, z) = 0 can be made explicit in yi essentially means
y = ḡ(z). Substituting y into h yields h(ḡ(z), z) = 0 or

(6) H(z) = 0.
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That is, the original nonlinear system of equations f(x) = 0 is reduced to the (usually
much) smaller system H(z) = 0.

Optimal tearing is the task of finding an ordering that minimizes the border
width

(7) d := dim z

of J . Throughout this paper, optimal tearing is treated as a sparse matrix ordering
task, and the numerical methods for solving the final system (6) are intentionally not
discussed.

Minimizing (7) is a popular choice as objective function [9, Sec. 8.4], and it
often results in a significant speed up, although it does not guarantee any savings in
computation time in the general case. Other issues related to this objective function
were discussed in detail in [3], such as ignoring that (6) can become ill-conditioned or
that the objective is unaware of the nonlinearities in (1).

It is important to note that minimizing (7) is significantly different from the
objective of the so-called fill-reducing orderings which minimize the fill-in. Tearing is
not a fill-reducing ordering: When breaking ties, tearing can make the exact opposite
decision of what a fill-reducing ordering (e.g. Markowitz rule [37]) would make [24].

We surveyed the methods for performing tearing either optimally with exact meth-
ods or with greedy heuristics in [3]. The variants of tearing were also reviewed, such as
tearing methods that allow in (4) forms other than bordered lower triangular form, or
that solve small subsystems simultaneously, and those that have an objective function
different from (7). Several application areas were also discussed in [3].

2. Identifying feasible assignments. The task of optimal tearing is equivalent
to maximizing the number of eliminated variables through assignments, see (3). If
the equation fi(x) = 0 of (1) can be solved symbolically for the variable xj , and
the solution is unique, explicit and numerically stable, then, and only then, the pair
(i, j) represents a feasible assignment. The more feasible assignments we find, the
more freedom we have when searching for elimination orders. This underlines the
importance of a software package (computer algebra system) for solving equations
symbolically. We first discuss how we identify those rearrangements of the equations
that give a unique and explicit solution in one variable, and temporarily ignore the
numerical stability issues. Then, we discuss how numerically troublesome functions
can be recognized. We follow a conservative approach in our implementation:
Solutions are excluded from the feasible assignments if we fail to prove uniqueness or
numerically stability, even if those solutions might in fact be unique and numerically
stable.

2.1. Provably unique and explicit solution. In our implementation, we use
SymPy [47] and attempt to solve the individual equations of (1) for each of its vari-
ables. SymPy is a fairly mature symbolic package, and if a closed form solution exists,
SymPy often finds it. We consider only those assignments as candidates for feasible
assignments where the symbolic package returns exactly one explicit solution. Let us
consider a few examples below.

For example, for the equation

(8) x1 − x2x3 = 0

SymPy will return

(9) x1 = x2x3, x2 =
x1
x3
, x3 =

x1
x2
.
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That is, we can make (8) explicit in any of its variables; these solutions are also
unique. All three assignments are candidates for feasible assignments. They are only
candidates because we have not considered numerical issues yet; issues like division
by zero will be discussed in the next section.

In other cases, the solution might not be unique. For example, when solving

(10) x21 + 2x1x2 − 1 = 0

for x1, SymPy will correctly return both

(11) x1 = −x2 +
√
x22 + 1 and x1 = −x2 −

√
x22 + 1.

Even though we could make (10) explicit in x1, we still have to exclude it from the
feasible assignments because there are two solutions.

A more sophisticated implementation could do the following when faced with
multiple solutions as in (11). Let us assume that x1 ≥ 0 and x2 ≥ 0 must hold: For
example, these bound constraints are also part of the input, or we deduced these lower
bounds from other constraints of the input. Then, a sophisticated implementation
could deduce that only x1 = −x2 +

√
x22 + 1 can hold at the solution because the

other formula always gives strictly negative values for x1 if x2 ≥ 0 but we know that
x1 ≥ 0 must hold.

Some equations do not have closed-form solutions, or the symbolic package that
we use fails to produce a closed-form solution; these two cases are identical from a
practical perspective. In our current implementation, such cases are never added to
the feasible assignments.

As discussed in Section 1, solving implicit equations is already performed in state-
of-the-art modeling systems. For the sake of this example, let us consider the case
when we are stuck with the following implicit equation:

(12) f3(x1, x2) = 0.

One can still try to solve the equation numerically for x2 and pretend that a function
g exists such that

(13) x2 = g(x1)

and add (3, 2) to the feasible assignments. Robust numerical methods are available for
solving (12) such as the Dekker-Brent method, see [15] and [10, Ch. 4]. However, we
are not aware of any modeling system that would check the uniqueness of the solution
in (12); the elimination (13) is performed with the x1 found by the numeric solver,
and other solutions, if any, are simply ignored. We never consider implicit equations
as feasible assignments in our current implementation (conservative approach).

2.2. Identifying numerically troublesome assignments. In the previous
section, we ignored the question of numerical stability. For example, if x2 or x3
happens to be 0 in (9), the corresponding formula involves division by zero. In this
section, we discuss how to recognize assignments that are potentially troublesome.
We again follow a conservative approach: We reject each formula that we fail to prove
numerically safe (even if it is always safe to evaluate in reality).

We assume that all variables have reasonable (not bigM) lower and upper bounds.
From an engineering perspective, this requirement does not spoil the generality of the
method: The variables in a typical technical system are double-bounded, although
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often implicitly. The physical limitations of the devices and the design typically
impose minimal and maximal throughput or load of the devices; this implies bounds
on the corresponding variables, either explicitly or implicitly. There are also natural
physical bounds, e.g., mole fractions of chemical components must be between 0 and
1, etc.

We use the interval arithmetic implementation available in SymPy [47] to check
the numerical safety of an assignment. For the purposes of the present paper, the
reader can think of interval arithmetic [28] as a computationally cheap way to get
guaranteed (but often suboptimal) lower and upper bounds on the range of a given
function over the domain of the variables. (Extended interval arithmetic can safely
work with infinity, division by zero, etc., see [28, Ch. 4].) Let us look at some examples
where we also give the lower and upper bounds on the variables.

Example 1. If we evaluate f(x1, x2) = x1−x2

x1+x2
with interval arithmetic over x1 ∈

[3, 9] and x2 ∈ [1, 2], we get [0.0909090, 2.0]. The true range is [0.2, 0.8]. As we
can see, interval arithmetic fulfilled its contract: The range obtained from the interval
arithmetic library indeed encloses the true range of the function but also overestimates
it. Nevertheless, it is good enough for our purposes.

Example 2. If we evaluate g(x) = 1
x2−x+1 over x ∈ [0, 1] with interval arithmetic,

we get [0.5, ∞]. Again, the true range, [1, 4
3 ] is enclosed but overestimated. In

this case, it is possible to get the true range with interval arithmetic if one uses the
equivalent formula 4

(2x−1)2+3 for evaluating g(x).

Example 3. Finally, an example where the evaluation fails: If we evaluate log(x)
over x ∈ [−1, 1], the interval arithmetic library throws an exception and complains
that “logarithm of a negative number” was encountered.

Rule for deciding on numerical safety. We consider only those assignments as
candidates for feasible assignments where the symbolic package returns exactly one
explicit solution. When checking the numerical safety of an assignment, we try to
evaluate the function on the right hand side of the assignment with interval arithmetic.
The evaluation either fails with an exception, or we get back an interval r as the result.
We consider the assignment numerically safe if and only if the evaluation did not throw
an exception and the result r ⊆ [−M,M ] where we set M = 1015 as default. However
we choose the variables within their bound constraints, numerically safe assignments
are always safe to evaluate with ordinary floating-point arithmetic: The evaluation
cannot fail due to division by zero, or due to illegal function arguments, etc.

This simple rule is admittedly not perfect. Since interval arithmetic usually over-
estimates the actual ranges, we can reject assignments that are in reality safe. How-
ever, accurately determining numerically safe assignments is an NP-hard problem in
general [34]. In our opinion, a single function evaluation with interval arithmetic is a
good compromise.

Another issue is that the above rule does not safeguard against the final system (6)
becoming ill-conditioned, see [3]. Our novel proof of concept algorithms automatically
mitigate this type of conditioning problem through reparameterization or redistribu-
tion [5, 7] in the context of global optimization. It is subject of future research to make
these reparameterization and redistribution algorithms practical outside the field of
global optimization.

3. Optimal tearing with integer programming.

3.1. Background. We recap those sections of [3] that are essential for the in-
teger programming approach; the reader is referred to [3] for details. We construct
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a bipartite graph B such that one of its disconnected node sets corresponds to the
equations (rows), the other to the variables (columns). If a variable appears in an
equation, there is an edge between the corresponding nodes, and the two nodes are
not connected otherwise. We are given F , an arbitrary subset of edges of B but with
the intent of F corresponding to the set of feasible assignments, see Section 2.

A matching M is a subset of edges of B such that at most one edge of M is
incident on any node. After a matching has been established, we orient B as follows.
We first remove those edges from M that are not in F ; the remaining edges in M
are directed towards variables, all other edges point towards equations. The resulting

M ′

B

M R C

D

2

6

5

3

1

4

Fig. 1. The steps of tearing: bipartite matching M ′ → matching M after considering feasible
assignments → orientation → feedback edge set → a possible elimination order.

directed graph has a specific cycle structure, see [3]: It is acyclic if and only if M does
not involve a maximum cardinality matching on any subgraph induced by the nodes
of a simple cycle.

We select a subset of M , called the feedback edge set, that is sufficient to reverse
(make them point towards the equations too) to make the resulting acyclic. Any of
the heuristics discussed in [4] is applicable. These heuristics can never fail but they
may produce a feedback edge set that is not of minimum cardinality; the proposed
algorithm will work nevertheless.

3.2. Integer programming formulation of optimal tearing. The following
integer programming formulation is used in our implementation; any feasible solution
to this integer program uniquely defines a bipartite matching M .

(14)

max
y

∑
e∈F

ye (find the maximum-cardinality matching)

s.t.
∑
e∈E

ureye ≤ 1 for each r ∈ R, (each row is matched at most once)

∑
e∈E

vceye ≤ 1 for each c ∈ C, (each column is matched at most once)

∑
e∈E

aseye ≤
`s
2
− 1 for each s ∈ S (cycles are not allowed).

Here the binary variable ye is 1 if edge e is in the matching M , and 0 otherwise; the
set F is an arbitrary subset of edges of B, but with the intent of F corresponding
to the set of feasible assignments, see Sec. 2; E, R, and C denote the index sets
of the edges, the rows, and the columns, respectively; ure is 1 if node r is incident
to edge e, and 0 otherwise; similarly, vce is 1 if node c is incident to edge e, and 0
otherwise; S is the index set of those simple cycles currently in the (incomplete) cycle
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matrix A = (ase); the entry ase is 1 if the edge e participates in the simple cycle s,
and 0 otherwise; `s is the length (the number of edges) of the simple cycle s. The
last inequality excludes maximum cardinality matchings on all subgraphs induced by
simple cycles; this ensures that after orienting the bipartite graph B according to the
matching, the obtained directed graph D is acyclic, see Sec. 3.1.

General-purpose integer programming solvers such as Gurobi [26] or SCIP [1] do
not have any difficulty solving (14) as long as enumerating all simple cycles is tractable.
Unfortunately, enumerating all simple cycles is typically intractable in practice; we
will consider such an example in Section 7.2.

4. Lazy constraint generation. In practice, solving the integer program (14)
directly can easily become intractable since it requires enumerating all the simple
cycles of the input bipartite graph B. Unfortunately, even sparse graphs can have ex-
ponentially many simple cycles [42], and such graphs appear in practice, e.g., cascades
(distillation columns) can realize this many simple cycles. The proposed method enu-
merates simple cycles in a lazy fashion, and extends the cycle matrix A iteratively in
the hope that only a tractable number of simple cycles has to be enumerated until
a provably optimal ordering is found. The pseudo-code of the algorithm is given as
Algorithm 1. The Python source code of the prototype implementation is available
at [2]. The computational results will be presented in Section 7.

4.1. Solving a sequence of integer programs with an incomplete cycle
matrix. Let us refer to problem (14) with the complete cycle matrix as P , and let P̃ (i)

denote its relaxation in iteration i where only a subset of simple cycles are included
in the cycle matrix. One can simply start with an empty cycle matrix in P̃ (0); more
elaborate initializations are also possible.

The optimal solution to the relaxed problem P̃ (i) gives the matching M (i); the
bipartite graph is oriented according to this matching as discussed in Section 3.1.
Since not all simple cycles are included in the cycle matrix, the directed graph D(i)

obtained with the orientation is not necessarily acyclic. Therefore we need to check
this.

A topological sort of a directed acyclic graph G = (V,E) is a linear ordering
of all its nodes such that if G contains an edge (u, v), then u appears before v in
the ordering [13, Sec. 22.4]. The nodes in a directed graph can be arranged in a
topological order if and only if the directed graph is acyclic [16, Sec. 14.8].

Topological sort succeeds if and only if D(i) is acyclic. If the topological sort
succeeds, the algorithm has found an optimal solution to P and therefore terminates.

If the topological sort fails, D(i) has cycles. In this case, we first create a feasible
solution to P as follows. We identify a feedback edge set (tear set) T (i) ⊆M (i) using
an appropriate heuristic, see for example [4]. The proposed algorithm is guaranteed
to make progress with any feedback edge set but the algorithm is likely to make better
progress with a T (i) of small cardinality. Reversing the edges in T (i) makes the graph
acyclic, see Sec. 3.1, and therefore the associated matching yields a feasible solution
to P . We keep track of the best feasible solution to P found.

After we have created a feasible solution to P , we improve the relaxation P̃ (i)

by adding new rows to the cycle matrix A(i). The directed graph D(i) must have at
least one cycle because topological sort failed previously. The feedback edge set T (i)

contains at least one edge of every cycle in D(i) by definition; therefore, there must
be at least one edge t ∈ T (i) that participates in a cycle. For each edge t ∈ T (i) we
compute the shortest path from the head of t to the tail of t with breadth-first search
(BFS). Such a shortest path exists if and only if t participates in a cycle; we extend
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this shortest path with t which then gives a simple cycle (even without chords). A
new row is appended to the cycle matrix per each simple cycle found. The cycle
matrix A(i) is guaranteed to grow at least by one row by the time we finish processing
all the edges in T (i). We then proceed with the next iteration step, starting with
solving the next relaxed problem P̃ (i+1) with this extended cycle matrix A(i+1). The
cycle matrix is only extended as the algorithm runs; rows are never removed from it.
As we will discuss shortly, it has not been observed yet that superfluous rows would
accumulate in the cycle matrix, slowing down the algorithm.

The algorithm terminates if the directed graph after the orientation becomes
acyclic (as already discussed) or the objective in a relaxed problem equals the cardi-
nality of the best known feasible solution to P . In both cases, the optimal solution
to (14), hence the optimal ordering of (1) is found by Algorithm 1.

4.2. Finite termination. The proposed algorithm must terminate in a finite
number of steps. In each iteration that does not terminate the algorithm, we are
guaranteed to make progress because we extend the cycle matrix by at least one row
and the number of simple cycles, i.e., the maximum number of rows that the cycle
matrix can have, is finite. In the worst case, all simple cycles have to be enumerated,
however, we are not aware of any challenging graph that would trigger this worst-case
(or a near worst-case) behavior. (A trivial example would be a graph with a single
simple cycle: Although all simple cycles have to be enumerated, it is not a challenge.)

Even though it is not guaranteed, the gap between the lower and upper bounds
on the optimum can shrink in each iteration: Beside making progress by extending
the cycle matrix, we may also find a better feasible solution to P by solving the
feedback edge set problem, and the objective of the relaxed problem may also improve
as the cycle matrix grows. Focusing only on the worst-case behavior (i.e., having to
enumerate all the simple cycles) is neither a realistic view of the practical performance
of the algorithm nor does it reveal why the algorithm can become impractical on
certain problem instances: It is the permutation symmetry that can make Algorithm 1
impractical in certain cases. By permutation symmetry we mean the following:
Given a Hessenberg form that corresponds to a feasible solution of (14), there are
typically many row permutations (bipartite matchings) that, after an appropriate
column permutation, realize the same upper envelope. The cost only depends on the
upper envelope.

5. Heuristics for ordering to lower Hessenberg form. This section intro-
duces Algorithms 2 and 3 that form the basis of the rest of the paper. We first
consider irreducible square matrices. As discussed in [3], a square matrix is irre-
ducible if and only if the fine Dulmage-Mendelsohn decomposition [18–20, 33] gen-
erates a single block (the entire matrix itself is the block) with zero-free diagonal.
The Dulmage-Mendelsohn decomposition is also referred to as block lower triangular
decomposition or BLT decomposition, since it outputs a block lower triangular form
if the input matrix is square and structurally nonsingular. More recent overviews of
the Dulmage-Mendelsohn decomposition method are available e.g., in [41], [17, Ch. 6],
and [14, Ch. 7].

Let the matrix A ∈ Rn×n be an irreducible matrix. In order to relate this section
to tearing, the matrix A of this section can be considered as the Jacobian of (1).
Furthermore, it is assumed that each equation in (1) can be made explicit in any of
its variables with appropriate symbolic transformations.

A lower Hessenberg form is a block lower triangular matrix but with fully
dense rectangular blocks on the diagonal, rather than square blocks. Consequently, the
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Algorithm 1: Integer programming-based algorithm with lazy constraint gen-
eration for computing the optimal tearing

Input: J , a sparse m× n matrix; B, the undirected bipartite graph associated with J , see
Sec. 3.1

Output: A matching that maximizes the cardinality of the eliminated variables
# P denotes the integer program (14) with the complete cycle matrix of B

1 Set the lower bound z and the upper bound z̄ on the objective to 0 and min(m,n),
respectively

2 Let ŷ denote the best feasible solution to P found at any point during the search
(incumbent solution)

3 Set the trivial solution ŷ = 0, realizing z = 0

4 Let A(i) denote the incomplete cycle matrix in (14), giving the relaxed problem P̃ (i)

(i = 0, 1, . . . )

5 Set A(0) to be empty
6 for i = 0, 1, . . . do

7 Solve the relaxed problem P̃ (i); results: solution y(i), matching M(i), and objective

value z(i)

# Optional: When the integer programming solver is invoked on the line just above,
# ŷ can be used as a starting point

8 Set the upper bound z̄ to min(z̄, z(i))
9 if z equals z̄ then

10 stop, ŷ yields optimal tearing

11 Let D(i) denote the directed graph obtained by orienting B according to M(i), see
Sec. 3.1

12 if D(i) can be topologically sorted then

13 stop, y(i) yields optimal tearing

14 Compute a feedback edge set (tear set) T (i) ⊆M(i) using an appropriate heuristic,
e.g. [4]

# See Sec. 4.1: T (i) cannot be empty as D(i) must have at least one cycle, and

# reversing each edge t ∈ T (i) would make D(i) acyclic

15 Set those components of y(i) to 0 that correspond to an edge in T (i)

# y(i) is now a feasible solution to P

16 Let ẑ be the new objective value at y(i)

17 if ẑ > z then
18 Set z to ẑ

19 Set ŷ to y(i)

# Extend the cycle matrix A(i) to get A(i+1)

20 foreach t ∈ T (i) do
21 Find a shortest path p from the head of t to the tail of t with breadth-first search

(BFS) in D(i)

22 if such a path p exists then
23 Turn the path p into a simple cycle s by adding the edge t to p
24 Add a new row r to the cycle matrix corresponding to s if r is not already in

the matrix

# At this point A(i+1) is guaranteed to have at least one additional row compared to

A(i)

height of the columns is nonincreasing. Since the matrix is assumed to be irreducible,
the first entry in each column is either on or above the diagonal.

We closely follow the presentation of Fletcher and Hall [24] in our discussion here.
Two heuristic algorithms for permuting A to lower Hessenberg form are discussed.
Both of these algorithms progressively remove rows and columns from A; the matrix
that remains when some rows and columns have been removed is called the active
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submatrix, see Figures 2–3. It is called the active submatrix since it is within
this submatrix where further permutations take place. The whole matrix is active
when the algorithm starts, and the active submatrix is empty on termination. The
indices of the removed rows and columns are assembled in the permutation vectors
ρ and κ, respectively, in the order they were removed; see Figure 2. The pair π =

Active
sub-
matrix

ρ

κ

Fig. 2. The reordered matrix after applying an incomplete permutation π = (ρ, κ).

(ρ, κ) will be referred to as incomplete permutation. The incomplete permutation
unambiguously determines the active submatrix; the active submatrix unambiguously
determines the removed row and column indices but not their order. For row i in the
active submatrix, let ri(π) denote the number of nonzero entries. Similarly, let cj(π)
be the number of nonzero entries in column j of the active submatrix. Hereafter
ri = ri(π) and cj = cj(π) will be referred to as row count and column count,
respectively.

Several heuristics have been proposed to permute A to one of the desirable forms
(bordered block lower triangular, spiked lower triangular, lower Hessenberg form)
discussed in [3], e.g., the Hellerman-Rarick family of ordering algorithms, see [23,
29, 30] and [17, Ch. 8], and the ordering algorithms of Stadtherr and Wood [44, 45].
Although there are subtle differences among these ordering algorithms, they all fit the
same pattern when viewed from a sufficiently high level of abstraction [24]; they only
seem to differ in the heuristics applied to break the ties on line 4 in Algorithm 2.

We note that Algorithm 2 resembles the well-known minimum degree ordering
algorithm for symmetric matrices [49, scheme 2], which in turn is a Markowitz order-
ing [37] applied to a symmetric problem. The reader is referred to [17, Sections 7.2
and 7.3] for a concise review of these other ordering algorithms, and to [25] for a
review on the evolution of the minimum degree ordering algorithms.

Algorithm 3, the two-sided algorithm of [24], is an extension of Algorithm 2.
Figure 3 shows an intermediate stage of the algorithm. The idea of working from
both ends and iteratively removing all rows and columns that have a single nonzero
entry already shows up in [35] as early as 1966, and later became known as forward and
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Algorithm 2: Heuristic for ordering to Hessenberg form [24]

Input: A, a sparse irreducible matrix
Output: A permuted to lower Hessenberg form

1 set A as the active submatrix
2 repeat
44 find a row in the active submatrix with minimum row count
5 put all columns which intersect this row to the left and consider them as removed
6 update row counts in the active submatrix
7 put all rows with zero row count to the top and consider them as removed

8 until all rows and columns are removed

backward triangularization [36]. Cellier’s matching rule [11, 48] also show similarities
with Algorithm 3.

Algorithm 3: The two-sided algorithm of [24] for ordering to Hessenberg form
(heuristic)

Input: A, a sparse irreducible matrix
Output: A permuted to lower Hessenberg form

1 set A as the active submatrix
2 repeat
3 find either a min-row-count row or a min-column-count column, whichever has fewer

entries
4 if a row is chosen then
5 proceed as in Algorithm 2

6 if a column is chosen then
7 remove all rows which intersect this column
8 update column counts
9 remove all columns with zero column count

10 until all rows and columns are removed

Active
sub-
matrix

Remove
min-row-count rows

Remove
min-column-count columns

Fig. 3. An intermediate stage of the two-sided algorithm for ordering to Hessenberg form.

We have discussed these algorithms here because they form the basis of the rest
of the present paper:

1. In the custom branch and bound algorithm of Section 6, instead of breaking
ties according to some heuristic as on line 4, all possibilities are systematically
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considered. The lower bounding procedure of Section 6.2, accompanying the
custom branch and bound algorithm, was inspired by Algorithm 3.

2. Beside inspiration, Algorithm 2 is also used in the branch and bound algo-
rithm of Section 6 to find a good feasible solution at the root node.

3. Although the integer programming approach of Section 4 does not require it,
both Algorithm 2 and 3 can be used for generating a good initial point.

Rectangular and reducible matrices in lower Hessenberg form. This is our exten-
sion of the lower Hessenberg forms to the under- and over-determined cases. A is
assumed to be a full rank m× n matrix.

If m ≥ n, we order A into the form

[
AT

AB

]
where AT ∈ Rn×n is a structurally

nonsingular lower Hessenberg form. If m ≤ n, we order A into the form [AL AR] where
AR ∈ Rm×m is a structurally nonsingular lower Hessenberg form. Note that neither
AT nor AR is required to be irreducible; they are only required to have structural full
rank. See [3] at the Dulmage-Mendelsohn decomposition on finding the structural
rank of a matrix. As we showed in [3], decomposing these matrices further into
smaller irreducible matrices could result in more guessed variables in tearing.

We can obtain such lower Hessenberg forms as follows. If m > n, we run Algo-
rithm 3 but we always choose rows; if m < n, we run Algorithm 3 but we always
choose columns.

6. Optimal tearing by a custom branch and bound algorithm. The pro-
posed algorithm is similar to Algorithm 2 but instead of breaking ties according to
some heuristic as on line 4 of Algorithm 2, the proposed algorithm considers all possi-
bilities in a branch and bound algorithm. The idea is certainly not new, see e.g. [12].

Simplifying assumptions. Let A ∈ Rm×n denote the Jacobian of the system (1).
(It is a deviation from the notations of Section 1 regarding A.) It is assumed in this
section that A has full structural column rank if m ≥ n, and A has full structural
row rank if m ≤ n. In short, A is structurally a full rank matrix. See [3] at the
Dulmage-Mendelsohn decomposition how this assumption can be checked. For the
sake of simplicity, it is assumed in this section that each equation in (1) can be made
explicit in any of its variables with appropriate symbolic transformations.

6.1. The proposed branch and bound algorithm. The reader is referred to
Section 5 regarding the definition of the active submatrix, permutation π = (ρ, κ),
row count ri = ri(π) and column count cj = cj(π). We say that we eliminate a
row if we solve the corresponding equation in (1) for one of its variables and then
remove the row and all intersecting columns from the active submatrix. The cost
of eliminating row i, or simply the row cost of row i, is the number of variables
that still need to be guessed when we eliminate row i. In terms of the row count,
the cost of row i is max(0, ri − 1): According to our assumption, each equation can
be symbolically transformed into an assignment to any of its remaining unknowns,
meaning that at most ri − 1 variables need to be guessed when row i is eliminated.
The cost

(15) z = z(ρ)

of an incomplete or complete permutation π = (ρ, κ) is the sum of all row costs
when the rows are eliminated one-by-one along the upper envelope, in the order deter-
mined by ρ. If the permutation is incomplete, the elimination (and the summation of
the row costs) stops at the end of ρ, and the active submatrix remains. The proposed
algorithm seeks a minimum cost permutation π that brings A into lower Hessenberg
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form.
A lower bound on the cost of the best possible complete permutation that

still may be achievable given an incomplete permutation (ρ, κ) is

(16)
ˆ
z(ρ) = z(ρ) + min

i
(max(0, ri − 1)),

since z(ρ) has already been spent, and at least mini(max(0, ri − 1)) guesses have to
be made in order to continue the elimination. This lower bound is also sharp in the
following sense: It can happen that all the other remaining rows can be iteratively
eliminated at zero cost after having eliminated the minimum cost row.

Distinguishing features. We now give the specific details that make the proposed
method a custom branch and bound algorithm.

1. The search tree is traversed in depth-first search order.
2. The best-first search rule is applied when branching; the score of a node is

ˆ
z(ρ), as defined by (16). The lowest score node is explored first, breaking ties
arbitrarily. An efficient implementation of the best-first search is possible
with a min-priority queue [13, Sec. 6.5].

3. An initial feasible solution is computed with Algorithm 2 before the branch
and bound search starts. A lower bound on the optimal cost elimination is
computed based on the rules of Section 6.2 (run only once).

4. When a new complete permutation is found (a leaf node is reached by the
branch and bound search), a procedure is run with this complete permutation
to improve the lower bound on the optimal cost. This procedure will be
discussed in Section 6.3.

5. The algorithm keeps tracks of the trailing submatrices that have already
been fully discovered during the depth-first search. Whenever we encounter
an active submatrix that has already been discovered, we just retrieve its
optimal ordering and cost from the bookkeeping.

6. The ‘back-track rule’ of Hernandez and Sargent [31] was applied to discard
entire subtrees of the branch and bound search tree by excluding sequences
that cannot possibly produce strictly lower cost solutions than the already
found ones. The reader is referred to [31] for further details.

7. The bipartite graph, corresponding to the sparse matrix to be ordered, can
become disconnected. Whenever this happens, the connected components are
processed independently.

The source code of the Python prototype implementation is available at [2]. The
computational results will be presented in Section 7.

6.2. Lower bounds based on the minimum row and column counts. The
input of the lower bound deducing algorithm is an m × n matrix A. Let z∗ denote
the cost of the optimal ordering of A. In our numerical experience, the following
approaches proved to be helpful:

• lower bounds based on the minimum row and column counts,
• relaxation by partitioning the columns of A (called column slice relaxation).

This section describes the former, the next section will address the latter approach.
We start with the case when m ≥ n. In any ordering, the cost of eliminating the

first row cannot be less than the minimum of all the row costs in the entire matrix A,
that is, we have the following lower bound on z∗:

(17) z∗ ≥ min
i
ri − 1, where i ∈ row indices of A, and m ≥ n.

A simple consequence of (17) is that a square nonsingular matrix A (m = n) cannot
be put into lower triangular form if the minimum row count is at least 2. As far as
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we can tell, basically the same idea appears in [12]
Let us now focus on the case when m ≤ n. We have to guess at least n − m

variables in any permutation: A variable is either guessed or assigned, and we can
perform at most as many assignments as there are equations. Since each guessed
variable costs 1 according to our definition of the cost function, we want to assign to
as many variables as possible using our m equations. Therefore, we form a nonsingular
m×m submatrix of A, and our goal is to find a cost optimal lower Hessenberg form
in this submatrix. The remaining part of A is an m× (n−m) matrix; it only contains
variables that have to be guessed anyway because we have used up all our equations
to perform eliminations in the other square submatrix. That is, we form a partition
of A as follows: A = [AL AR] where AR is the sought cost optimal m × m lower
Hessenberg form, and AL contains the left over columns that have to be guessed
because we have no remaining equations to form assignments to those variables. We
can think of it as running the two-sided algorithm of Fletcher and Hall [24] but we
always choose columns so that AR will be a lower Hessenberg form. See also Figure 3
and Algorithm 3.

If the last column of the full rank Hessenberg form matrix AR has c` entries in an
arbitrary ordering of A, i.e., the column count of the last column is c`, the elimination
cost associated with AR is at least c` − 1. The proof is given in the Appendix. The
minimum column count over all the columns in A (and not just in AR) is obviously a
lower bound on c`:

(18) c` ≥ min
j
cj , where j ∈ column indices of A.

We can now give a lower bound on z∗:

(19) z∗ ≥ min
j
cj − 1 + (n−m), where j ∈ column indices of A, and m ≤ n.

Here, the first term on the right-hand side is the lower bound on the elimination cost
in AR, and the second term accounts for the variables that we have to guess in AL

regardless of AR.
The inequality (17) gives a sharp lower bound in the sense that after removing

the row with the minimum count, it can happen that all the remaining rows can be
iteratively eliminated at zero cost in A. The same holds for (19): After removing the
minimum cost column in A, it is possible that the active submatrix in AR can be
permuted to lower triangular form (has zero cost). Besides being sharp, (17) and (19)
are available at no additional implementation effort and in constant time: An efficient
implementation of the algorithm has to keep track of the minimum row and/or column
count anyway, e.g., with a min-heap data structure [13, Ch. 6].

6.3. Column slice relaxation. Let Ã denote an arbitrarily chosen column slice
of A. The columns in Ã must be either guessed or eliminated, and Ã has all the rows
that can possibly used for elimination. By computing the optimal elimination cost
for Ã, we lower bound the elimination cost for the columns in Ã in the optimal
cost elimination of A: The columns not in Ã only impose further constraints on the
elimination order but those constraints are ignored (relaxation). We get a lower bound
on the optimal elimination cost of A if the columns of A are partitioned, and the
optimal elimination cost for each column slice is computed and then accumulated.
In practice, it is usually not worth computing the optimal elimination cost for the
slices; therefore, we only compute a lower bound in each slice, e.g. as discussed in
Section 6.2.
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Although any column partition of A can be used for relaxation, the usefulness of
the deduced lower bound greatly depends on the choice of the column partition. In our
numerical experience, the following blocking procedure gives useful results on certain
problem instances. We walk along the upper envelope of the Hessenberg form: We
always step either to the right or downwards, and we always move as long as we can
before having to change the direction. We partition the matrix both horizontally and
vertically whenever we are about to step more than one to the right. In other words:
We partition the ordered matrix right before those places where non-zero cost row
eliminations happen. This gives the partition shown in Figure 4. This partitioning

Fig. 4. Partitioning the Hessenberg form at the places where variables had to be guessed.

technique proved to be useful for the problem shown on the left of Figure 4, whereas it
does not produce useful lower bounds for the problem shown on the right of Figure 4.
The pattern on the left would be a very challenging pattern for the algorithm without
this lower bounding procedure; however, the algorithm proves optimality immediately
on the root node with this column slice relaxation.

7. Computational results. The computations were carried out with the fol-
lowing hardware and software configuration. Processor: Intel(R) Core(TM) i5-3320M
CPU at 2.60GHz; operating system: Ubuntu 14.04.3 LTS with 3.13.0-67-generic ker-
nel; the state-of-the-art integer programming solver Gurobi [26] was called through
its API from Python 2.7.6.; the graph library NetworkX [27] 1.9.1 was used.

7.1. Checking correctness with brute-force and randomized testing.
The algorithms proposed in Sections 4 and 6 were first cross-checked as follows. All
bipartite graphs with bipartite node set of cardinality n = 1 . . . 6 were generated
with nauty [39]. The cost of the optimal tearing was computed for each graph with
both algorithms, then cross-checked for equality. A similar cross-checking was carried
out with random bipartite graphs of random size (bipartite node sets of cardinality
7 . . . 30) and varying sparsity, generated with networkx [8, 27]. The algorithms agreed
in all tested cases.

7.2. Ordering the steady-state model of a distillation column. The bi-
partite graph corresponding to the steady-state model equations of the distillation
column of [32] (with N = 50 stages) has 1350 nodes in each bipartite node set, 3419
edges out of which 2902 are considered as feasible assignments. The undirected graph
has more than 107 simple cycles (possibly several orders of magnitude more); enu-
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merating all of them is not tractable in reasonable time. The algorithm of Section 4
has nevertheless no difficulty finding and proving the optimal ordering in 2.5 seconds.
The optimal tearing has cost 53 and the final cycle matrix had 285 rows when the
algorithm terminated. As this example shows, size is not an appropriate measure of
the difficulty.

7.3. Performance on the COCONUT Benchmark.
The need for highly structured matrices. It is not tractable to perform a brute-

force search for matrices that trigger poor performance: The search space is already
too large for n = 7. The randomized tests revealed that the integer programming
approach of Section 4 can become impractical (too slow) if the graph is dense and the
cardinality of at least one of the two bipartite node sets exceeds 12. However, apart
from this, even the randomized tests did not prove to be useful for finding matrices that
lead to poor performance of the algorithms. Hand-crafted, highly structured matrices,
such as the one on the right of Figure 4, cause significantly worse performance in the
custom branch and bound algorithm than any of the 10 000 randomly generated
matrices of the same size.

In order to find highly structured sparsity patterns that are difficult to order opti-
mally, a series of experiments were carried out with the COCONUT Benchmark [43],
a collection of test problems for global optimization. Since the present paper focuses
on systems of equations, and the COCONUT Benchmark consists of optimization
problems, compromises had to be made. It will be discussed in the corresponding
paragraphs how an appropriate subset of the COCONUT Benchmark was selected.

Initial row order: running the algorithm 12 times. It has been observed with
highly structured matrices that changing the initial order of the rows of the input
matrix can lead to significant variation in performance. To avoid such biases, each
matrix has been ordered 12 times in our tests: Each matrix was ordered starting with
the original row order (1.), then with the reverse of the original row order (2.), and
with 10 random row permutations (3–12). We consider a problem solved if the custom
branch and bound algorithm can prove optimality in 10 seconds in all 12 cases; we
consider the tearing suboptimal otherwise. It is important to emphasize that even
if the algorithm fails to prove optimality, it delivers a reasonable ordering together
with a rigorous lower bound on the cost of the optimal tearing. We now describe the
experiments in details.

Ordering the Jacobian of the equality constraints. A subset of the COCONUT
Benchmark was selected in this experiment, consisting of 316 problems, where (a) the
problems do not have any inequality constraints, (b) the problems have at least 8
equality constraints, (c) the Jacobian of the constraints is not full. The rationale
for these requirements is as follows. Extending the proposed method to inequality
constraints will be the subject of another paper; therefore, we excluded all problems
having inequalities. The reason for the size requirement (b) is that below this size,
one can easily enumerate and evaluate all the possibilities in a brute-force fashion.
Adding these problems to the performance test does not add any value since neither
of the proposed algorithms have any difficulty solving them. As for requirement (c),
the proposed custom branch and bound algorithm solves the case of the full matrix
immediately on the root node; moreover, there is nothing to be gained with tearing
if the Jacobian is full. The results are summarized in Table 1; the corresponding
subset of the COCONUT Benchmark and the Python source code for reproducing
the computations are available at [2].
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Table 1
Five-number summary of the problem size distributions when ordering the Jacobian of the

equality constraints with a time-limit of 10 seconds. Optimal means that the branch and bound
algorithm of Section 6 could prove optimality of the tearing found in all 12 runs; the result is
considered suboptimal otherwise. See the text for details.

Number of rows
min lower quartile median upper quartile max count

All problems 8 19 160 2000 14000 316
Optimal 8 11 55 990 13800 225
Suboptimal 25 237 1024 3375 14000 91

Ordering the Jacobian of the first-order optimality conditions. Solving the first-
order optimality conditions involves solving a system of equations [40, Ch. 12.3]. In
this experiment, the structural sparsity pattern of this system was ordered:

(20) K =

[
H JT

J I

]
,

where H ∈ Rn×n is the Lagrangian Hessian, and J ∈ Rm×n is the Jacobian of the
equality constraints. Note that K is symmetric but neither of the algorithms exploits
it.

Similarly to the previous tests, a subset of the COCONUT Benchmark was se-
lected such that (a) the problems do not have any inequality constraints, (b) the
corresponding K has at least 8 rows (and therefore at least 8 columns), (c) neither H
nor J is full, (d) H is not empty, (e) K has full structural rank. There are 376 such
problems. The results are summarized in Table 2; the corresponding subset of the CO-
CONUT Benchmark and the Python source code for reproducing the computations
are available at [2].

Table 2
Five-number summary of the problem size distributions when ordering the Jacobian of the first-

order optimality conditions (see Equation (20)) with a time-limit of 10 seconds. Optimal means that
the branch and bound algorithm of Section 6 could prove optimality of the tearing found in all 12
runs; the result is considered suboptimal otherwise. See the text for details.

Number of rows of K
min lower quartile median upper quartile max count

All problems 8 18 176 2509 33997 376
Optimal 8 12 18 29 30002 183
Suboptimal 29 351 2048 10399 33997 193

8. Conclusions. Two exact algorithms for tearing were proposed in the present
paper: (i) an algorithm based on integer programming, and (ii) a custom branch
and bound algorithm. The integer programming based approach has no difficulty
finding and proving the optimal ordering of the steady-state model equations of the
distillation column of [32] with N = 50 stages corresponding to a matrix with 1350
rows and 1350 columns (Sec. 7.2). Despite this success, the integer programming
approach tends to be impractical for dense matrices if the number of rows exceeds
12. The cause of the inefficiency is permutation symmetry: Given a Hessenberg
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form that corresponds to a feasible solution of the integer program (14), there are
typically many row permutations that, after an appropriate column permutation,
realize the same upper envelope, but the cost only depends on the upper envelope.
One could dynamically add further constraints to the integer program (14) to break
this permutation symmetry (similarly to how the cycle matrix is extended). However,
we decided to follow another approach to mitigate this issue.

While the integer programming approach solves the problem of tearing indirectly
(the solution of (14) only gives a bipartite matching), the custom branch and bound
algorithm tackles tearing by constructing the Hessenberg form directly. This more
natural formulation and the full control over the branch and bound search facilitates
improvements such as organizing the search (best-first and depth-first search), better
relaxations that yield better lower bounds (Sections 6.2 and 6.3), avoiding repeated
work by memoization (keeping track of the explored submatrices), exploiting indepen-
dent subproblems (the bipartite graph becoming disconnected), implementing custom
exclusion rules (the back-track rule of [31]), etc. Based on the performance on the
COCONUT Benchmark, see Section 7.3, we consider the proposed branch and bound
algorithm practical for the purposes of global optimization [5–7], and in cases where
systems with the same sparsity pattern are solved repeatedly and the time spent on
tearing pays off. Even if the algorithm fails to prove optimality within the user-defined
time limit, it delivers a reasonable ordering together with a rigorous lower bound on
the cost of the optimal tearing.

The source code of the proposed method is available on GitHub at [2]; the prob-
lems used for benchmarking are available at [43]. This contribution aims at establish-
ing a benchmark for future exact algorithms.

Future work. The proposed branch and bound algorithm can probably be im-
proved further with a more sophisticated implementation. Examples include the fol-
lowings. Extending the two-sided algorithm of Fletcher and Hall [24], and putting it
into a branch and bound context would most likely lead to significant improvements
both in speed and robustness. The two-sided algorithm could also be used to improve
the lower bound. Another example for improvements is a simplifier that transforms
the problem into an equivalent problem that is easier to solve. The branch and bound
algorithm of Section 6 does not have any simplifier. Simplifications are, e.g., removing
full rows and full columns, removing duplicate rows and duplicate columns (duplicate:
have the same sparsity pattern), removing dominated rows and columns, etc. After
solving the simplified problem, one then has to reconstruct the solution to the original
problem. These simplifications, together with the exclusion rule of [31], enforce par-
tial order among the rows, and therefore mitigate the harmful effects of permutation
symmetry.

While analyzing the sparsity patterns where the proposed method failed to prove
optimality in 10 seconds, it became obvious that a robust implementation also needs
strong global information derived from properties of the entire graph. The details of
how such global information can be derived and used are another subject for future
research. In any case, patterns like the one on the right of Figure 4, which currently
triggers poor performance as the size is increased, should be solved immediately on
the root node if global information is used.

As discussed in [3], the current objective of tearing has issues. Future research
should target better objective functions. An appealing candidate is to decompose the
problem into smaller subproblems while minimizing the largest subproblem size [46].
Finally, independently of all the prospective research directions listed so far, improving
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the currently very conservative method of finding feasible assignments (c.f. Section 2)
would give more freedom for any future tearing algorithm, hence it would lead to
potentially better orderings.

Acknowledgement. The research was funded by the Austrian Science Fund
(FWF): P27891-N32. In addition, support by the Austrian Research Promotion
Agency (FFG) under project number 846920 is gratefully acknowledged.

A. The upper envelope and its relation to the row and column counts.
In a square lower Hessenberg form, the first nonzero entries of the columns form the
upper envelope. We say that we walk the envelope, when we walk from the
top left corner to the bottom right corner along the (upper) envelope as follows: We
always step either to the right or downwards, and we always move as long as we can
before having to change the direction. The row count ri is the number of steps we
make to the right on the top of row i. Now we walk the envelope in reverse, that
is, from the bottom right corner to the top left corner, then the column count cj is
the number of steps that we make upwards immediately before column j. See also
Figure 5.

2

2

1

3

2

1

2

1

3 2 1 2 2 1 2 1

Fig. 5. Left: Walking the upper envelope from the top left corner to the bottom right corner
gives the row counts. Right: Walking from the bottom right corner to the top left corner gives the
column counts.

B. Lower bound on the minimum cost ordering. For the full rank matrix
A ∈ Rn×n we derive the following inequality:

(21) z∗ ≥ min
j
cj − 1, where j ∈ column indices of A;

z∗ denotes the optimal cost ordering of A to lower Hessenberg form, and the cost
defined as in Section 6; cj is the column count of column j, see Section 5. Furthermore,
we define x+ as

x+ = max(0, x).

Since A is a square matrix, we have

(22)
∑
i

ri =
∑
j

cj = n,

see also Appendix A.
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With these notations, the cost z of a given permutation to lower Hessenberg form
is

(23) z =
∑
i

(ri − 1)+

according to our definition. Since

(24) (ri − 1)+ ≥ ri − 1

it follows that

(25) z =
∑
i

(ri − 1)+ ≥

[∑
i

(ri − 1)

]+
=

[(∑
i

ri

)
− n)

]+
.

From (22) we have

(26)

[(∑
i

ri

)
− n)

]+
=

∑
j

cj

− n)

+

.

Let

(27) c = min
j
cj ,

and with c we can continue as follows:

(28)

∑
j

cj

− n)

+

≥
[
n

(
min
j
cj

)
− n

]+
= (nc− n)+ = n(c− 1)+ ≥ c− 1.

To summarize (23)–(28):

(29) z ≥ c− 1 = min
j
cj − 1;

that is, we have proved (21).
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