
HCL: Hybrid Contrastive Learning for Graph-based
Recommendation

Xiyao Ma
University of Florida

maxiy@ufl.edu

Zheng Gao
Amazon Alexa AI

zhenggao@amazon.com

Qian Hu
Amazon Alexa AI

huqia@amazon.com

Mohamed AbdelHady
Amazon Alexa AI

mbdeamz@amazon.com

Abstract—Graph-based collaborative filtering for recommen-
dation has attracted great attention recently, due to its effective-
ness of capturing high-order proximity among users and items. To
further improve its model robustness and alleviate label-sparsity
issue, contrastive learning has been introduced to polish user and
item representation by contrasting different views of user/item
nodes, learning necessary and robust representation for recom-
mendation. However, we argue that prior contrastive learning
approaches only explore its unsupervised intrinsic nature as a
plug-in without leveraging available user-item interactions, failing
to exploit the huge potential of contrastive learning. In this paper,
to alleviate the above issues, we propose Hybrid Contrastive
Learning for graph-based recommendation that integrates un-
supervised and supervised contrastive learning. Specifically, to
improve model robustness, we first present bipartite graph
augmentation operations from the perspectives of node attributes
and topology to generate incomplete and noisy graph views. Then,
we propose a hybrid contrastive learning module that conducts
unsupervised and supervised contrastive learning together. Last,
we present an approach to perform hybrid contrastive learning
permutationally among multiple views. Extensive experiments
show that our proposed model not only outperforms state-of-
the-art baselines significantly on two public datasets and one
internal dataset, but also demonstrates superiority regarding to
model robustness over other strong baselines.

I. INTRODUCTION

In modern recommendation systems, neural collaborative
filtering (NCF) is a prevalent technique to estimate the
likelihood that a user would adopt an item based on their
historical interactions [1]. Unlike conventional collaborative
filtering approaches that learn user/item latent representations
from matrix decomposition or reconstruction [2], NCF models
employ non-linear neural network layers to learn user/item low
dimensional embeddings to predict their potential interactions
in an efficient and effective manner.

Despite the advantages, NCF methods still suffer from
three limitations: First, NCF approaches only take user-item
direct (first-order) interactions into consideration but ignore
their latent high-order connectivity. Second, the observed
interactions are always too sparse to yield effective user/item
embeddings. This is well known as label sparsity issue. Third,
there is inevitable noise in user-item interactions, e.g. a user
is misled to click an item.

To solve foregoing limitations, graph-based collaborative
filtering (GCF) methods ground a user-item bipartite graph [3],

This work was done during Xiyao Ma’s internship in Amazon Alexa.
Zheng Gao is the corresponding author.

[4] by treating users and items as nodes and their interactions
as edges. Then, graph convolutional networks are applied on
the bipartite graph to capture high-order connectivity between
users and items, learning node embeddings through informa-
tion propagation and integration from their neighbor nodes.
To further alleviate label sparsity issue, Self-supervised Graph
Learning (SGL) and other contrastive learning-based methods
[5], [6] generate two different views of the input graph and
minimize discrepancies between two views of the same user
(item) node and maximize discrepancies between two views
of two different user (item) nodes.

Recently, SGL proposes to apply the unsupervised con-
trastive learning on the user-item bipartite graph as a sup-
plement to the supervised learning loss [5]. However, avail-
able user-item interactions are only utilized to compute the
supervised ranking loss, but overlook their potential useful-
ness in the paradigm of contrastive learning, resulting in
suboptimal performance. In this work, we root in graph-based
recommendation systems and propose a Hybrid Contrastive
Learning (HCL) model integrating unsupervised and super-
vised contrastive learning that is tied closer to graph-based
recommendation, making full use of contrastive learning. In
detail, bipartite graph augmentation operations are proposed to
generate not only incomplete but also noisy graph views from
the perspectives of node embeddings and topology. A hybrid
contrastive learning module is proposed to equip contrastive
learning with the ability of better adapting to graph-based
recommendation problem. The insight is to effectively leverage
observed user-item interactions to compute supervised con-
trastive learning loss, in addition to unsupervised contrastive
loss. Furthermore, we introduce a method to perform the
hybrid contrastive learning across multiple views permutation-
ally.

Experimental results on two public and one internal datasets
show the effectiveness of HCL that significantly outperforms
strong state-of-the-art (SOTA) baselines. Auxiliary studies also
show the benefits of HCL regarding to model robustness and
generated embedding quality. To summarize, the contributions
of this work are three-folds:

• We identify the limitation of existing contrastive learning
methods for recommendation and propose Hybrid Con-
trastive Learning. To the best of our knowledge, this is
the first work to jointly uncover and exploit unsupervised
and supervised contrastive learning for recommendation.

• We generalize a permutational approach that performs
hybrid contrastive learning across multiple views which
are generated to convey incomplete and noisy information
with respect to node embeddings and topology.

• Extensive experiments show the superiority of HCL
regarding to model generalization and robustness over
SOTA baselines on two public and one internal dataset.

II. PROBLEM FORMULATION

Generally, in a recommendation scenario, we have a set
of users U , a set of items I, and observed interactions with
implicit feedback Y = {yui = 1|u ∈ U , i ∈ I}. Following the
recent graph-based collaborative filtering approaches [3], [4],
we build a user-item bipartite graph g = (V, E) where node
set V = U ∪ I involves all users and items, and the edge set
E includes all observed interactions Y .

In general, for top-k item recommendation, we aim to learn
a function that predicts the probability ŷui that user u would
interact with item i.

III. PRELIMINARY

In this section, we revisit LightGCN [4], a strong GCF
baseline that captures the high-order connectivity from the
user-item bipartite graph, and the model is trained in a
supervised learning paradigm.

Each user and item is associated with an ID embedding,
denoted as e0u and e0i . Generally, LightGCN is applied on the
user-item bipartite graph to learn user and item representations
by aggregating the representation of its direct neighbors N and
with the defined graph convolution operations:

elu =
∑
i∈Nu

1√
|Nu|

√
|Ni|

el−1
i ,

eli =
∑
u∈Ni

1√
|Ni|

√
|Nu|

el−1
u . (1)

where elu and eli indicate user and item node representation in
the l-th layer (l > 0), respectively.

To capture the l-order connectivity among users and items,
representations of the l-order neighbors are allowed to propa-
gate through the edges to the target node by stacking l-layers
of LightGCN. For example, with 2 layers of LightGCN, the
second-order connectivity between two users who interacted
with the same items can be learnt.

Then, an average pooling layer is applied on the learnt user
and item representations from L layers to generate the final
user and item vectors.

e = avgpooling
({

el | l = [0, · · · , L]
})

(2)

Next, the probability of user u would adopt item i is
estimated by taking the inner product of a user vector eu and
an item vector ei. In supervised learning paradigm, a common
practice is to employ Bayesian Personalized Ranking (BPR)

loss [7] that assigns higher probability to observed interactions
than its unobserved interactions:

LBPR =
∑

(u,i)∈Y,(u,j)/∈Y

− log σ (ŷui − ŷuj) , (3)

ŷui = e⊤u ei. (4)

where (u, i) is a positive pair that is observed in the training
data; while j is randomly sampled from the unobserved items
of user u to build a negative pair (u, j).

IV. PROPOSED METHOD

In this work, motivated by the great success achieved by
prior works [5], [8]–[10], we propose a novel method called
Hybrid Contrastive Learning as illustrated in Figure 1, where
LightGCN is utilized as the backbone model that is trained
with BPR loss. In general, the proposed HCL has three steps:
(1) We propose novel bipartite graph augmentation strategies
by taking node embeddings and topology into consideration
to generate different incomplete and noisy views for the input
user-item graph. (2) The proposed hybrid contrastive learning
performs unsupervised and supervised contrastive learning
on homogeneous nodes and observed user-item interactions,
respectively. (3) We conduct the hybrid contrastive learning
among multiple views permutationally.

A. Bipartite Graph Augmentation

Distinct from computer vision (CV) and natural language
processing (NLP) tasks where data points are isolated [8],
[11], nodes in user-item bipartite graph are connected and
interdependent to each other, making it challenging to apply
data augmentation strategies directly from CV and NLP tasks.
An existing work [5] introduces an effective edge dropout
operation. However, it only considers node topology, making
downstream contrastive learning easily capture the incomplete-
ness.

In this work, we move steps further and propose bipartite
graph augmentation strategies to generate different graph
views that contain incomplete and noisy information about
node embedding and node topology to boost downstream con-
trastive learning. Essentially, four bipartite graph augmentation
operations O are sampled and applied k times on graph g to
generate different graph views g(k) = O(g), k ∈ [1, 2, ..., k].

Node Embedding Dropout: From the perspective of creat-
ing graph views that contain incomplete node embedding, we
propose to randomly zero out the node embedding values with
a prior probability p. This is represented by the pink circle and
square of u1 and i1, respectively, in Figure 1.

Edge Dropout: To generate incomplete node topology in-
formation, we randomly discard some observed edges between
users and items with the same probability p. This is indicated
by the dashed edge between u1 and i1 in Figure 1.

Edge Moving: To learn more robust representations via
contrastive learning, we propose to inject some noise with a
proper ratio into the generated graph views, which can also
help exploit contrastive learning. To this end, we randomly
move some edges by changing their ending points with the

Node Feature Dropout Edge Dropout Edge Moving Connecting Similar

LightGCN

LightGCN

...

...
...

Permutation

Graph Multi-views

LightGCN

Homogeneous Nodes

Bipartite Graph Augmentation Operations
Supervised LearningHybrid Contrastive Learning Graph

...

Supervised CL Loss & Unsupervised CL Loss

Supervised Loss

Fig. 1: The overall framework of our proposed HCL. The model is trained in multi-task learning fashion with supervised learning BPR loss
and hybrid contrastive learning loss.

same probability p. For example, we can move the edge
between u1 and i2 and let it connect u2 to i2 in Figure 1.

Connecting Similar Homogeneous Nodes: Another
schema to inject light perturbation of node topology is to
connect two similar homogeneous (same-type) nodes. For
instance, u1 and u2 are connected with a red edge in Figure
1 as they show similar behaviors. To achieve this, we first
randomly select a set of users with the probability p/2. Then,
for each target user u in the user set, we find her top-5 similar
users from all users based on their pairwise similarity. Given
two users u and j and their interaction history set Su and
Sj , their pairwise similarity is computed by Jaccard Index
leskovec2020mining:

s =
|Su ∩ Sj |
|Su ∪ Sj |

(5)

Last, we randomly pick one similar user out of the five
and connect it to user u. Analogously, we apply the same
operations to connect two similar item nodes.

B. Hybrid Contrastive Learning

a) Unsupervised Contrastive Learning: Recent work ex-
plores contrastive learning on graph to alleviate the label-
sparsity issue and improve model robustness [5], [6] given
a pair of generated graph views. For example, SGL proposes
to pull together the different views of the same node and push
apart those of different nodes [5]. In detail, two generated
views ((g(a), g(b)), 1 ⩽ a < b ⩽ k) are feed into the same
LightGCN model to obtain the user node representations e

(a)
u

and e
(b)
u . InfoNCE loss [12] is employed to compute unsuper-

vised contrastive learning (UCL) loss by node discrimination:

LUCL(U (a),U (b)) =
∑
u∈U

− log
exp

(
f
(
e
(a)
u , e

(b)
u

)
/τ

)
∑

v∈U exp
(
f
(
e
(a)
u , e

(b)
v

)
/τ

) (6)

where f(·, ·) indicates the cosine similarity function, and τ
is the temperature hyper-parameter. Different views of the
same user are considered as positive pairs (e(a)u , e(b)u), being
encouraged to perform consistently; while views of different
users are treated as negative pairs (e(a)u , e(b)v) that their mutual
agreements should be minimized. We obtain item-side UCL
loss LUCL(I(a), I(b)) similarly.

b) Supervised Contrastive Learning: Although great im-
provement, unsupervised contrastive learning overlooks the
usefulness of available user-item interactions when it comes
to contrastive learning given two different graph views.
Herein we propose a hybrid contrastive learning module that
also effectively leverage available user-item interactions. As
demonstrated in Figure 1, in addition to unsupervised con-
trastive learning on (e

(a)
u , e

(b)
u) and (e

(a)
i , e

(b)
i), we propose

to encourage the consistency of the embeddings of the users
and the interacted items by computing supervised contrastive
learning (SCL) loss given the observed user-item interactions
(e

(b)
u , e

(a)
i). Following the same intuition behind contrastive

learning, on the one hand, given an observed user-item in-
teraction yui, we maximize the agreement between the user
representation e

(b)
u and the item representation e

(a)
i generated

from different views (see the numerator in Equation 7). On the
other hand, we minimize the agreement between unobserved
user-item pairs by uniformly sampling unobserved items for

user u (see the denominator in Equation 7):

LSCL(U (b), I(a)) =
∑

(u,i)∈Y

− log
exp

(
f
(
e
(b)
u , e

(a)
i

)
/τ

)
∑

q∈Q exp
(
f
(
e
(b)
u , e

(a)
q

)
/τ

) (7)

where Q indicates the item set that includes one observed item
and sampled unobserved items for user u.

By doing this, the model is enforced to learn the first-order
user-item proximity explicitly across different incomplete and
noisy views of users and items, improving the robustness and
generalization of the model. Note that regarding to super-
vised contrastive learning, we intuitively choose to calculate
LSCL(U (a), I(b)) on user and item nodes from different views
instead of LSCL(U (a), I(a)) on user and item nodes from the
same view, since computing SCL loss on user and item nodes
from the same view is redundant when they have been used
to compute BPR loss.

C. Multi-view Permutation

Recent work shows that computing the summation of con-
trastive leaning losses over all pairs of any two views across
multiple incomplete views improves the overall performance
[9]. Note that in the denominator of the the loss function
LUCL(U (a),U (b)) 6, we fix one user node U (a) in the graph
view g(a) as the anchor and enumerates all user nodes U (b)

in the graph view g(b). Therefore, we also need to compute
the symmetrical one, which is LUCL(U (b),U (a)) by anchor-
ing at U (b). Similarly, we compute LSCL(U (a), I(b)) and
LSCL(U (b), I(a)) for supervised contrastive learning. The total
multi-view HCL loss is the summation of the HCL loss terms
computed on every pair of graph views permutationally, and
each HCL loss term is the summation of unsupervised con-
trastive learning losses on user and item nodes and supervised
contrastive learning losses.

Lmulti−view
HCL =

∑
a,b

LHCL(g
(a), g(b)), (8)

LHCL(g
(a), g(b)) =LUCL(U (a),U (b)) + LUCL(U (b),U (a))

+LUCL(I(a), I(b)) + LUCL(I(b), I(a))

+LSCL(U (a), I(b)) + LSCL(U (b), I(a)).
(9)

We trained the model in the multi-task learning fashion with
the final loss, which is the summation of supervised BPR
ranking loss, multi-view hybrid contrastive learning loss, and
L2 regularization.

Lfinal = LBPR + λ1Lmulti−view
HCL + λ2∥Θ∥22 (10)

where λ1 and λ2 are two hyper-parameters to control the
impacts of HCL loss and L2 regularization, respectively.

It is worth mentioning that although the proposed HCL
requires longer training time, it delivers the same inference
speed as LightGCN since contrastive learning is only leveraged
during training.

V. EXPERIMENTS

To validate the superiority of our proposed HCL regarding
to effectiveness and robustness, we conduct extensive experi-
ments to answer the following research questions:

• RQ1: How does HCL perform top-K recommendation
task, compared with other SOTA models?

• RQ2: How do the components of HCL affect model
performance with different settings?

• RQ3: What benefits does HCL bring for graph-based
recommendation?

A. Datasets

We adopt two widely-used public datasets, Yelp2018 and
Amazon-book, and one internal Recipe dataset to evaluate
model performances across the experiments:

• Yelp2018: It is extracted from the 2018 edition of Yelp
challenge. The local business like restaurants and bars are
viewed as items.

• Amazon-book: It comes from the collection of datasets
for product recommendation [13].

• Recipe: We collect one year (2020/6 - 2021/5) user-
recipe interaction data from the production traffic of a
voice assistant in the United State. Individual users are
de-identified in this dataset. To ensure the dataset quality,
we adopt 3-core setting that retains users and recipes with
at least three interactions.

TABLE I: Statistics of the datasets

Datasets # Users # Items # Interactions Density
Yelp2018 31,668 38,048 1,561,406 0.0013
Amazon-book 52,643 91,599 2,984,108 0.00062
Recipe 57,023 26,285 347,041 0.00023

We report the statistics of three datasets in Table I. The three
datasets cover different orders of magnitude about the quantity
of users and items, and is expected to compare model fairly.
For the two public datasets, we use the preprocessed datasets
released by the authors of [3] 1. For Recipe dataset, we extract
the latest 20% of interactions for each user as the testing set,
and create the validation set by taking the the latest 10% of
the rest interactions of each user.

B. Baselines

In the experiment, we mainly adopt three categories of
models as baselines for performance comparison: Non-GCF
models (MF, NCF), GCF models (NGCF, LightGCN), and
GCF model with contrastive learning (SGL):

• MF-BPR [7]: Matrix factorization is trained by BPR
loss, modeling user-item direct interactions with an inner
product interaction function.

• NCF [14]: It is a strong non-graph-based method that uti-
lizes neural networks with non-linear activation function
to model interactions between user and item embeddings.

• NGCF [3]: It is a graph-based collaborative filter-
ing model that adds a feature interaction module with

1https://github.com/wujcan/SGL

TABLE II: Model Performance Comparison on Public Datasets.

Datasets Yelp2018 Amazon-book
Category Models Precision@20 Recall@20 HitRate@20 NDCG@20 Precision@20 Recall@20 HitRate@20 NDCG@20

Non-GCF MF-BPR [7] 0.0223 0.0491 0.3224 0.0394 0.0119 0.0285 0.1801 0.0221
NCF [14] 0.0203 0.0441 0.3 0.0357 0.0097 0.023 0.1532 0.0174

GCF NGCF [3] 0.0229 0.0511 0.3323 0.0417 0.012 0.0294 0.182 0.0221
LightGCN [4] 0.0259 0.0575 0.361 0.047 0.0143 0.0356 0.2134 0.027

GCF+CL

SGL [5] 0.0262 0.0581 0.366 0.0476 0.0147 0.0367 0.2176 0.0282
HCL (k=2) [5] 0.0281 0.063 0.3846 0.0516 0.0162 0.0387 0.2247 0.0297
HCL (k=3) 0.0287 0.0643 0.3935 0.0525 0.0166 0.0395 0.2304 0.0307
Improvement (%) 9.5 10.7 7.5 10.3 12.9 7.6 5.9 8.9

element-wise product of user and item embedding into
message passing.

• LightGCN [4]: It is a SOTA GCF baseline that presents
a light convolution message aggregation function by
removing the unnecessary parts from NGCF, greatly
improving the model performance.

• SGL [5]: It is a SOTA GCF-based model that performs
unsupervised contrastive learning as a supplement to the
supervised BPR loss.

C. Main Results (RQ1)

We first compare model performances for top-K recom-
mendation on the testing set of two public datasets in terms
of widely-used metrics for recommendation, Precision@K,
Recall@K, HitRate@K, and NDCG@K [15], and we adopt
the same K = 20 following baseline papers.

Before comparing the model overall performances, we
would like to point out the differences of training settings used
in this work and baseline papers [3]–[5]. In the baseline papers,
models are trained on the whole training set and evaluated on
the testing set without validation set, and the models might be
overfitted. Thus, we extract the latest 10% interactions of each
user in the training set to build a validation set that is utilized
to avoid overfitting during training. We re-train all models on
the truncated training data, resulting in lower scores than the
reported scores in baseline papers.

As reported in Table II, compared with Non-GCF methods
like MF-BPR and NCF that treat each user-item interaction
independently, GCF approaches like NGCF and LightGCN
show higher performance by discovering and capturing the
implicit high-order relations among users and items on the
grounded user-item bipartite graph. SGL introduces contrastive
learning to alleviate the label-sparsity issue and improve the
performance further. Finally, given different numbers of graph
views (k = 2 or k = 3), our proposed HCL consistently
yields the best performance on both datasets. Specifically,
when k = 3, HCL outperforms SGL in terms of Recall@20
and NDCG@20 by 10.7% and 10.3% on Yelp2018 dataset,
respectively.

We further evaluate models on a real-world and internal
Recipe dataset. We are not allowed to share the absolute
performance metrics, so we instead show relative performance
improvement of our method compared to a strong baseline
SGL. Distinct from the observations from the two public
datasets, NCF and LightGCN are two best baselines while

SGL delivers inferior results. This might be due to two poten-
tial reasons: (1) SGL generates views only with edge dropout,
which inherently limit the downstream contrastive learning. (2)
SGL does not compute the unsupervised contrastive learning
permutationally and prone to stuck at local minimum. On
the contrary, the proposed HCL exploits contrastive learning
comprehensively in both unsupervised and supervised learning
settings and outperforms all strong baselines by a large margin.

TABLE III: Model Relative Performance Comparison on Recipe
Dataset with SGL.

Recipe
Models Precision@20 Recall@20 HitRate@20 NDCG@20
MF +2.2% +4.9% +4.8% +2.7%
NCF +45.6% +10.5% +4.0% +6.7%
NGCF -2.2% -46.0% -50.2% -55%
LightGCN +23.9% +9.4% +3.9% +5.5%
SGL +0.0% +0.00% +0.00% +0.0%
HCL (k=2) +50% +15.4% +6.4% 10.2%
HCL (k=3) +54.3% +16.3% +9.1% 15.6%

TABLE IV: Ablation Study.

Datasets Yelp2018 Amazon-book
Methods Recall@20 NDCG@20 Recall@20 NDCG@20
HCL 0.0643 0.0525 0.0395 0.0307
- DA 0.063 (-2.0%) 0.0510 (-2.8%) 0.0385 (-2.5%) 0.0298 (-3.0%)
- SCL 0.0623 (-3.1%) 0.0506 (-3.6%) 0.0381 (-3.5%) 0.0292 (-4.9%)
- MV 0.063 (-2.0%) 0.0516 (-1.7%) 0.0387 (-2.0%) 0.0297 (-3.3%)
- PL 0.0627 (-2.5%) 0.0508 (-3.2%) 0.0385 (-2.5%) 0.0296 (-3.6%)

D. Model Study (RQ2)

a) Abalation Study: We conduct ablation study to quan-
tify the impact of the components in our proposed HCL and
report the corresponding degradations in Table IV, where
DA, SCL, MV, and PL indicate the three our proposed
bipartite graph augmentation operations (e.g, node feature
dropout, edge moving, and connecting similar homogeneous
nodes), supervised contrastive learning, multiple views, and
permutational losses, respectively. Each proposed component
contributes in a certain degree to the improvement of model
performance, which demonstrates the reasonability of our pro-
posed architecture. Taking a close look at the results, removing
SCL hurts the performance most among all the settings,
which demonstrates that SCL can effectively leverage the
available user-item interactions to learn better representation
from different views.

b) Effect of probability p: We further measure the impact
of the probability p used for generating different incomplete

and noisy views in bipartite graph augmentation stage. As
depicted in Figure 2, p = 0.1 has the best learning curve,
while adopting a very large or a very small value of p hurts
the model performance more or less. On one hand, removing
(injecting) too much information (noise) restricts the model to
learn meaningful representations; on the other hand, removing
(injecting) too less information (noise) makes the contrastive
learning tasks very easy to be learnt and fail to provide
additional learning signals for model training. Therefore, it
is crucial to select a suitable value for probability p to control
the magnitude of incomplete and noisy information conveyed
in each view of the input graph.

0 5 10 15 20 25 30

epochs

0.045

0.050

0.055

0.060

0.065

0.070

0.075

R
ec

al
l@

20 p=0.02
p=0.05
p=0.1
p=0.2
p=0.4
p=0.6
p=0.8

(a) Yelp2018

0 5 10 15 20 25 30

epochs

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

R
ec

al
l@

20 p=0.02
p=0.05
p=0.1
p=0.2
p=0.4
p=0.6
p=0.8

(b) Amazon-book

Fig. 2: Effect of probability p for bipartite graph augmentation.

0 20 40 60 80 100 120 140 160

LightGCN

SGL

HCL (k=2)

HCL (k=3)

HCL (k=4)

16.2

47.9

53.2

85.4

146.4

(a) Yelp2018

0 100 200 300 400

LightGCN

SGL

HCL (k=2)

HCL (k=3)

HCL (k=4)

54.8

155.6

165.3

280.2

432.4

(b) Amazon-book

Fig. 3: Time (seconds) of training models for one epoch.

c) Effect of view quantity k: We report the time of
training HCL with different numbers of graph views for one
epoch in Figure 3. The testing platform is equipped with
four Nvidia V100 (16GB) graphics cards and Intel Xeon
CPU E5-2686 v4. Compared with LightGCN that is trained
only in supervised learning manner, incorporating contrastive
learning indeed incurs extra training time. When k = 2, HCL
has comparable training time with SGL, but delivers much
higher performance than SGL (shown in Table II). However,
training time grows exponentially as k increases. Therefore,
for computational efficiency, we adopt k = 2 and k = 3 during
experiments, and we do not report the model performance
when k = 4 as it takes too long to get the model trained.

E. Benefits of HCL (RQ3)

a) Evaluating Model Robustness: As mentioned above,
our proposed model are expected to improve model robustness
by contrasting different incomplete and noisy views of the
input graph. To validate this point, we conduct experiments

that train models with noisy user-item interactions by poison-
ing the training set with different ratios of unobserved user-
item interaction data. We remain the validation and testing
set unchanged. We plot the model performance in terms of
Recall@20 and NDCG@20 with different noise ratios on two
public datasets in Figure 4.

We first observe that training with noisy data decreases
the model performance on the two datasets. However, our
proposed HCL has a much smaller degradation rate than SGL
and LigthGCN as the noise ratio increases. Furthermore, HCL
trained with noise ratio of 0.2 even outperforms SGL and
LightGCN that are trained without noise by a large margin,
showing the effectiveness and robustness of HCL.

0.0 0.05 0.1 0.15 0.2
Noise Ratio

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

R
ec

al
l@

20

0.0643 0.0633 0.0632 0.0625 0.0615

0.0581 0.057 0.0559
0.053

0.0514

0.0575
0.0542

0.051
0.0488

0.0464

HCL
SGL
LightGCN

0.0 0.05 0.1 0.15 0.2
Noise Ratio

0.030

0.035

0.040

0.045

0.050

0.055

N
D

C
G

@
20

0.0525 0.0518 0.0517 0.051 0.0507

0.0476
0.0467 0.0459 0.0453

0.0437
0.047

0.0443

0.0419
0.0398

0.0383

HCL
SGL
LightGCN

(a) On Yelp2018 dataset.

0.0 0.05 0.1 0.15 0.2
Noise Ratio

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

0.0375

0.0400
R

ec
al

l@
20

0.0395 0.039 0.0385 0.0379 0.03730.0367

0.0334 0.0327 0.032
0.031

0.0356

0.0333
0.0321

0.0308

0.0289

HCL
SGL
LightGCN

0.0 0.05 0.1 0.15 0.2
Noise Ratio

0.020

0.022

0.024

0.026

0.028

0.030

0.032

N
D

C
G

@
20

0.0307 0.0303 0.0299
0.0293 0.0289

0.0282

0.026
0.0252

0.0246
0.0238

0.027

0.0256
0.025

0.0239

0.0225HCL
SGL
LightGCN

(b) On Amazon-book dataset.

Fig. 4: Model performance with noise ratios. The bar represents the
results in terms of Recall@20 and NDCG@20, respectively. The
dotted line indicates model performance degradation when trained
with different ratios of noise data.

2 1 0 1 2 3
3

2

1

0

1

2

3

(a) SGL

2 1 0 1 2 3
3

2

1

0

1

2

3

(b) HCL

Fig. 5: Visualization of users and items embeddings learnt by SGL
and the proposed HCL, where the stars (⋆) represent different users
and points (•) in same color indicate the interacted items of the user
in the testing set.

b) Assessing Embedding Quality: To check whether the
proposed HCL can generate good users and items embed-
dings, we examine the user and item embeddings generated
by HCL and SGL. We randomly pick five users and their
interacted items from the testing set of Yelp2018 dataset,

and the corresponding embeddings are projected into a two-
dimensional space with Principal Component Analysis (PCA)
[16] as visualized in Figure 5. Comparing the two figures,
the item embeddings of the same user learnt by HCL are
closer to each other and more prone to form clusters than
SGL, indicating the better quality of embeddings generated
by HCL than SGL.

F. Implementation Details

In our proposed HCL, we randomly sample 100 negative
unobserved items for each user to compute the supervised con-
trastive learning loss. Following the baselines, with the same
hyper-parameters, we train the models using Adam optimizer
[17] with learning rate of 1e−3. We set embedding dimension
as 64 for both user and item embedding and 3 layers of graph
neural networks for all GCF methods across the experiments.
We empirically adopt different values of λ1 = 0.1, 0.1, 0.3
and τ = 0.2, 0.2, 0.4 for Yelp2018, Amazon-book, and Recipe
datasets, respectively. To avoid model overfitting, we adopt
λ2 = 1e− 4 for L2 regularization and early stop the training
if the a higher recall score is not achieved for 50 continuous
epochs.

VI. RELATED WORK

a) Neural Collaborative Filtering: NCF techniques are
prevalent used in modern recommender systems [1]. By
learning user and item embeddings from their interactions,
NCF approaches aims to predict their pairwise relationship as
their final objective. NCF [14] is the pioneering work which
generalizes conventional matrix factorization to neural network
architecture. A series of follow-up works take advantage
of NCF model architecture and involve more complicated
features as auxiliary information. DIN [18] represents user
embeddings leveraging not only interaction history but also
profile and context features. DIEN [19] proposes an interest
extractor layer to capture user temporal interests from history
behavior sequence. DSIN [20] extends from DIEN model
to capture user dynamic and evolving interests from session
based behaviors. For other NCF variants, J-NCF [21] applies
a joint neural network model which couples deep feature
learning and deep interaction modeling on user-item rating
matrix. DPLCF [22] preserves privacy issues in recommen-
dation. And NICF [23] learns user interests from interactive
feedback via a reinforcement approach. Beyond collaborative
filtering, [24] addresses collaborative reasoning, which bridge
differentiable neural networks and symbolic reasoning in a
shared architecture.

b) Graph Collaborative Filtering: To uncover high-order
connectivity between user and items, graph collaborative fil-
tering (GCF) becomes an emerging topic which constructs
user-item bipartite interaction graph and learns their pair-
wise relationships under graph convolutional network (GCN)
paradigm [25]–[27]. PinSage [28] and IntentGC [29] are
both graph convolutional network models which learn user
& item embeddings through the information propagation in
bipartite interaction graphs. NGCF [3] proposes a stacked

propagation layer to learn node embedding from both node
itself and neighbour nodes. Extended from this, LR-GCCF
[30] removes non-linear transformations and LightGCN [4]
only keeps normalized sum of neighbor embeddings to ac-
celerate training speed. IMP-GCN [31] enhances LightGCN
by passing user interests to learn node embeddings. Similarly,
DGCF [32] involve user intents and SHCF [33] considers node
auxiliary attributes into embedding learning process. DGCN
and MixGCF [34], [35] both devise general negative sampling
plugins to existing models.

c) Contrastive Learning: A surge of attention on con-
trastive learning has been dedicated to recommendation tasks
to solve the label sparsity issue. SGL [5] generates multiple
views of a node, maximizing the agreement between different
views of the same node compared to that of other nodes.
CCGL [36] and HeCo [37] are its two variants employed
on either cascade or heterogeneous graphs. [6] integrates
graph contrastive module and debiased contrastive module
to reduce recommendation randomness. CLCRec [38] con-
ducts a novel contrastive objective function to solve cold-
start recommendation problem. NCE-PLRec [39] derives a
closed-form of highly efficient linear recommendation algo-
rithm to solve popularity recommendation bias. GCC [40]
is a graph contrastive coding framework to encode and dis-
criminate sampled subgraphs. DHCN [41] and HCGR [42]
both propose hypergraph convolutional networks for session-
based recommendation with multi-view contrastive learning.
GraphCL [43] designs four types of graph augmentations
to learn node embeddings in a contrastive and unsupervised
manner. GroupIM [44] is a user-group recommendation task
which contrastively regularizes user-group latent space to
capture user social associations.

VII. CONCLUSION

In this paper, we proposed a novel framework, named HCL,
with three contributions to well exploit contrastive learning
for graph-based recommendation: (1) bipartite graph augmen-
tation operations from the perspectives of node embeddings
and topology, (2) hybrid contrastive learning that combines
unsupervised and supervised contrastive learning, (3) per-
forming hybrid contrastive learning permutationally across
multiple views. Extensive experiments showed superiority of
the proposed model regarding to model performance and
robustness than several strong baselines on two public datasets
and one internal dataset. In the future, we aims to improve the
model further by exploring negative sampling methods and
curriculum learning that gradually incorporates more difficult
negative samples.

REFERENCES

[1] L. Wu, X. He, X. Wang, K. Zhang, and M. Wang, “A survey on neural
recommendation: From collaborative filtering to content and context
enriched recommendation,” arXiv preprint arXiv:2104.13030, 2021.

[2] R. Zhang, Q.-d. Liu, J.-X. Wei et al., “Collaborative filtering for
recommender systems,” in 2014 Second International Conference on
Advanced Cloud and Big Data. IEEE, 2014, pp. 301–308.

[3] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph
collaborative filtering,” Proceedings of the 42nd International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
2019.

[4] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn:
Simplifying and powering graph convolution network for recommenda-
tion,” Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2020.

[5] J. Wu, X. Wang, F. Feng, X. He, L. Chen, J. Lian, and X. Xie,
“Self-supervised graph learning for recommendation,” in Proceedings
of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2021, pp. 726–735.

[6] Z. Liu, Y. Ma, Y. Ouyang, and Z. Xiong, “Contrastive learning for
recommender system,” arXiv preprint arXiv:2101.01317, 2021.

[7] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” in UAI, 2009.

[8] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple
framework for contrastive learning of visual representations,” ArXiv, vol.
abs/2002.05709, 2020.

[9] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,” in
ECCV, 2020.

[10] X. Ma, Z. Gao, Q. Hu, and M. AbdelHady, “Contrastive knowledge
graph attention network for request-based recipe recommendation.”

[11] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick, “Momentum con-
trast for unsupervised visual representation learning,” 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
9726–9735, 2020.

[12] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models,” in AISTATS,
2010.

[13] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering,” Proceedings of
the 25th International Conference on World Wide Web, 2016.

[14] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” Proceedings of the 26th International Conference
on World Wide Web, 2017.

[15] K. Järvelin and J. Kekäläinen, “Ir evaluation methods for retrieving
highly relevant documents,” SIGIR Forum, vol. 51, pp. 243–250, 2017.

[16] I. T. Jolliffe, “Principal component analysis,” in International Encyclo-
pedia of Statistical Science, 2011.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2015.

[18] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
and K. Gai, “Deep interest network for click-through rate prediction,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 1059–1068.

[19] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and K. Gai,
“Deep interest evolution network for click-through rate prediction,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 5941–5948.

[20] Y. Feng, F. Lv, W. Shen, M. Wang, F. Sun, Y. Zhu, and K. Yang, “Deep
session interest network for click-through rate prediction,” arXiv preprint
arXiv:1905.06482, 2019.

[21] W. Chen, F. Cai, H. Chen, and M. D. Rijke, “Joint neural collaborative
filtering for recommender systems,” ACM Transactions on Information
Systems (TOIS), vol. 37, no. 4, pp. 1–30, 2019.

[22] C. Gao, C. Huang, D. Lin, D. Jin, and Y. Li, “Dplcf: Differentially
private local collaborative filtering,” in Proceedings of the 43rd In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval, 2020, pp. 961–970.

[23] L. Zou, L. Xia, Y. Gu, X. Zhao, W. Liu, J. X. Huang, and D. Yin,
“Neural interactive collaborative filtering,” in Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2020, pp. 749–758.

[24] H. Chen, S. Shi, Y. Li, and Y. Zhang, “Neural collaborative reasoning,”
in Proceedings of the Web Conference 2021, 2021, pp. 1516–1527.

[25] S. Wu, F. Sun, W. Zhang, and B. Cui, “Graph neural networks in
recommender systems: a survey,” arXiv preprint arXiv:2011.02260,
2020.

[26] S. Wang, L. Hu, Y. Wang, X. He, Q. Z. Sheng, M. A. Orgun, L. Cao,
F. Ricci, and P. S. Yu, “Graph learning based recommender systems: A
review,” arXiv preprint arXiv:2105.06339, 2021.

[27] J. Sun, Z. Cheng, S. Zuberi, F. Pérez, and M. Volkovs, “Hgcf: Hyperbolic
graph convolution networks for collaborative filtering,” in Proceedings
of the Web Conference 2021, 2021, pp. 593–601.

[28] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 2018,
pp. 974–983.

[29] J. Zhao, Z. Zhou, Z. Guan, W. Zhao, W. Ning, G. Qiu, and X. He,
“Intentgc: a scalable graph convolution framework fusing heterogeneous
information for recommendation,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2019, pp. 2347–2357.

[30] L. Chen, L. Wu, R. Hong, K. Zhang, and M. Wang, “Revisiting
graph based collaborative filtering: A linear residual graph convolutional
network approach,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 34, no. 01, 2020, pp. 27–34.

[31] F. Liu, Z. Cheng, L. Zhu, Z. Gao, and L. Nie, “Interest-aware message-
passing gcn for recommendation,” in Proceedings of the Web Conference
2021, 2021, pp. 1296–1305.

[32] X. Wang, H. Jin, A. Zhang, X. He, T. Xu, and T.-S. Chua, “Disentangled
graph collaborative filtering,” in Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2020, pp. 1001–1010.

[33] C. Li, L. Hu, C. Shi, G. Song, and Y. Lu, “Sequence-aware heteroge-
neous graph neural collaborative filtering,” in Proceedings of the 2021
SIAM International Conference on Data Mining (SDM). SIAM, 2021,
pp. 64–72.

[34] T. Huang, Y. Dong, M. Ding, Z. Yang, W. Feng, X. Wang, and J. Tang,
“Mixgcf: An improved training method for graph neural network-based
recommender systems,” 2021.

[35] Y. Zheng, C. Gao, L. Chen, D. Jin, and Y. Li, “Dgcn: Diversified
recommendation with graph convolutional networks,” in Proceedings of
the Web Conference 2021, 2021, pp. 401–412.

[36] X. Xu, F. Zhou, K. Zhang, and S. Liu, “Ccgl: Contrastive cascade graph
learning,” arXiv preprint arXiv:2107.12576, 2021.

[37] X. Wang, N. Liu, H. Han, and C. Shi, “Self-supervised heterogeneous
graph neural network with co-contrastive learning,” arXiv preprint
arXiv:2105.09111, 2021.

[38] Y. Wei, X. Wang, Q. Li, L. Nie, Y. Li, X. Li, and T.-S. Chua,
“Contrastive learning for cold-start recommendation,” arXiv preprint
arXiv:2107.05315, 2021.

[39] G. Wu, M. Volkovs, C. L. Soon, S. Sanner, and H. Rai, “Noise con-
trastive estimation for one-class collaborative filtering,” in Proceedings
of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2019, pp. 135–144.

[40] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang,
and J. Tang, “Gcc: Graph contrastive coding for graph neural network
pre-training,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp.
1150–1160.

[41] X. Xia, H. Yin, J. Yu, Q. Wang, L. Cui, and X. Zhang, “Self-supervised
hypergraph convolutional networks for session-based recommendation,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 5, 2021, pp. 4503–4511.

[42] N. Guo, X. Liu, S. Li, Q. Ma, Y. Zhao, B. Han, L. Zheng, K. Gao, and
X. Guo, “Hcgr: Hyperbolic contrastive graph representation learning
for session-based recommendation,” arXiv preprint arXiv:2107.05366,
2021.

[43] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” Advances in Neural Information
Processing Systems, vol. 33, pp. 5812–5823, 2020.

[44] A. Sankar, Y. Wu, Y. Wu, W. Zhang, H. Yang, and H. Sundaram,
“Groupim: A mutual information maximization framework for neural
group recommendation,” in Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Re-
trieval, 2020, pp. 1279–1288.

	Introduction
	Problem Formulation
	Preliminary
	Proposed Method
	Bipartite Graph Augmentation
	Hybrid Contrastive Learning
	Multi-view Permutation

	Experiments
	Datasets
	Baselines
	Main Results (RQ1)
	Model Study (RQ2)
	Benefits of HCL (RQ3)
	Implementation Details

	Related Work
	Conclusion
	References

