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ABSTRACT
Knowledge graphs (KGs) have gradually become valuable assets

for many AI applications. In a KG, a node denotes an entity, and

an edge (or link) denotes a relationship between the entities rep-

resented by the nodes. Knowledge graph completion infers and

predicts missing edges in a KG automatically. Knowledge graph em-

beddings have shed light on addressing this task. Recent research

embeds KGs in hyperbolic (negatively curved) space instead of con-

ventional Euclidean (zero curved) space and is effective in capturing

hierarchical structures. However, as multi-relational graphs, KGs

are not structured uniformly and display intrinsic heterogeneous

structures. They usually contain rich types of structures, such as

hierarchical and cyclic typed structures. Embedding KGs in single-

curvature space, such as Euclidean or hyperbolic space, overlooks

the intrinsic heterogeneous structures of KGs, and therefore can-

not accurately capture their structures. To address this issue, we

propose Mixed-Curvature Multi-Relational Graph Neural Network

(M
2
GNN), a generic approach that embeds multi-relational KGs in

a mixed-curvature space for knowledge graph completion. Specifi-

cally, we define and construct a mixed-curvature space through a

product manifold combining multiple single-curvature spaces (e.g.,

spherical, hyperbolic, or Euclidean) with the purpose of modeling

a variety of structures. However, constructing a mixed-curvature

space typically requires manually defining the fixed curvatures,

which needs domain knowledge and additional data analysis. Im-

properly defined curvature space also cannot capture the structures

of KGs accurately. To address this problem, we set mixed-curvatures

as trainable parameters to better capture the underlying structures

of the KGs. Furthermore, we propose a Graph Neural Updater by

leveraging the heterogeneous relational context in mixed-curvature

space to improve the quality of the embedding. Experiments on
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three KG datasets demonstrate that the proposed M
2
GNN can out-

perform its single geometry counterpart as well as state-of-the-art

embedding methods on the KG completion task.
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1 INTRODUCTION
Knowledge graphs (KGs) play a key role in many semantic applica-

tions. In fact, reasoning with KGs is a popular research direction,

with innovations that improve various downstream applications,

such as semantic search (search information with meaning and not

only with lexical matching) [3, 4], dialogue generation (generate re-

sponses for conversational agents) [22, 25], recommender systems

(predict users’ preferences) [16, 20, 51, 55], and question answering

(answer questions posed in natural language automatically) [13, 25].

However, real-world KGs are often highly incomplete, thus making

the task of link prediction between entities—knowledge graph (KG)
completion—attract considerable attention.

Recent literature shows that embedding methods are powerful

tools for KG completion [24, 52]. The basic idea is to map the

entities/relations to a latent (and usually low-dimensional) vector

space while preserving the semantics and inherent structures for

link prediction in the KG. In fact, existing approaches, such as

TransE [5] and STransE [35] map the KG data into a latent vector

space and use Euclidean distance to measure similarity.

https://doi.org/10.1145/3442381.3450118
https://doi.org/10.1145/3442381.3450118
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(a) This KG example demonstrates a hierarchical (tree-like)
structure. There are three types of KG entities (writer, movie,
and actor) and two types of relations (write and starred by),
where entities are connected in a hierarchic structure, e.g.,
George Lucas is the parent of Star Wars, therefore exhibiting a
higher level than Star Wars in the hierarchy.

Star Wars

Han Solo

starcharacter

George
Lucas

direct

acted by

Harrison
Ford

written by

Indiana Jones and
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(b) This KG example demonstrates a cyclic structure. There are
four types of KG entities (director, writer, movie, cast, and actor)
and five types of relations (direct, character, acted by, star, and
written by), where each entity connects with another entity in a
cycle, in a way that George Lucas is at the same level as the rest
of the entities.

Figure 1: Two KG examples demonstrate hierarchical and
cyclic structures, respectively.

KGs usually contain rich types of structures, such as hierarchical

and cyclic structures. Figure 1a and Figure 1b demonstrate two KG

examples showing hierarchical and cyclic structures, respectively.

As shown in Figure 1a, in the triple (George Lucas, write, Star Wars),
George Lucas is a parent of Star Wars, therefore exhibiting a higher

level than Star Wars in the hierarchy. However, in Figure 1b, each

entity connects with another entity in a cycle, in a way that George
Lucas is at the same level as StarWars/Han Solo/Harrison Ford/Indian
Jones and the Kingdom of the Crystal Skull. Existing Euclidean space

approaches overlook the existence of these two particular structures

and have limited representation ability to capture them.

More recently, KG embeddings in the Poincaré ball model of

hyperbolic space, a non-Euclidean space, have been devised [1, 6].

They demonstrate boosted performance for KGs with rich hierar-

chical structures. However, because the focus of hyperbolic spaces

is on capturing hierarchical structures and they overlook other

structure types, the performance drops for KGs with limited hier-

archical structures. KGs are usually not structured uniformly and

demonstrate intrinsic heterogeneity, as in the previous examples.

Therefore, a new approach is needed, which can capture different

types of structures.

A number of approaches have been developed for embedding

KGs in non-Euclidean space (constant non-zero curvature space),

such as spherical (positively curved) space [31, 57] and hyperbolic

(negatively curved) space [10, 36]. They exhibit improved repre-

sentation ability to model specific types of structured data when

compared with their Euclidean counterparts, such as the hierar-

chical or cyclic structures. To benefit from both spherical space

and hyperbolic space, the embedding on a “non-constant” curved

manifold is constructed by a product of constant curvature Rie-

mannian manifolds [17, 41]. However, these methods focus mainly

on unsupervised embeddings and they only consider homogeneous

relation (with only one relation type), which cannot be applied

directly to address the multi-relational KG embedding problem.

Furthermore, constructing a constant non-zero curvature space

typically requires manually defining the fixed curvatures using

domain knowledge and additional data analysis. An improperly

defined curvature cannot capture the structures of a KG accurately.

The Graph Neural Network (GNN) has received wide attention

in the past few years [8, 11, 15, 21, 26, 29, 48, 50, 53, 54, 58, 61]. By

leveraging rich context information, it may be possible to improve

the quality of the learned embeddings significantly. Recently, a

few attempts have been made to learn the KG embeddings via

a graph neural network. Examples are the graph convolutional

network [40, 47] and the graph attention network [2, 34]. These

methods can learn the KG embedding automatically in a data-driven

way. However, to the best of our knowledge, no attempt has been

made to combine GNN with non-Euclidean space to address the

multi-relational KG embedding problem.

To address the issues above, we propose the Mixed-Curvature

Multi-Relational Graph Neural Network (M
2
GNN), a generic graph

neural network framework to embed multi-relational KG data in

the mixed-curvature space for KG completion. In particular, we

define and construct a mixed-curvature space through a Riemann-

ian product manifold combining multiple single-curvature spaces

(i.e., Euclidean with zero curvature, spherical with positive curva-

ture, and hyperbolic with negative curvature) with a decomposable

Riemannian distance function. By fusing multiple single-curvature

spaces, a new space is constructed with a non-constant heteroge-

neous curvature. The constructed mixed-curvature space is more

flexible and can better match the intrinsic heterogeneous data struc-

tures of the KGs and thus generate higher quality representations

for a variety of KG data types with varying structures (e.g., hi-

erarchical or cyclic). We note the already mentioned difficulties

associated with a hand-engineered curvature space and introduce

trainable heterogeneous curvatures. We also note the importance

of the rich heterogeneous relational context and propose a GNN-

based graph neural updater, which can adaptively integrate the

relational context. Learned embeddings can better exploit the data

heterogeneous structures by leveraging the multi-hop information

in the mixed-curvature space. Experimental results show that the

proposed M
2
GNN can indeed recover non-uniform curvatures and

outperform state-of-the-art methods on the benchmark datasets.
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In summary, in this paper we make the following contributions:

• We formulate the problem of KG embedding in a mixed-

curvature space for KG completion and develop a multi-

relational graph neural network framework, which can ben-

efit from the mixed-curvature geometry and graph neural

network. To the best of our knowledge, we are the first to

apply mixed-curvature geometry and graph neural network

in tackling the KG completion problem.

• We propose the mixed-curvature space with trainable hetero-

geneous curvatures and space weights to embed the multi-

relational KG data, which can better capture intrinsic het-

erogeneous structure in the KG.

• We generalize the graph neural network to the multi- rela-

tional and mixed-curvature settings, which can overcome

the limitation of the translational distance model by more

effectively leveraging the heterogeneous relational context.

• We conduct extensive experiments on three different KG

datasets and demonstrate that the proposed method outper-

forms its single geometry counterpart and existing state-of-

the-art embedding methods on the KG completion task.

The rest of the paper is organized as follows. We introduce

preliminaries and the problem formulation in Section 2. Section 3

discusses in detail our proposed mixed-curvature multi-relational

graph neural network for KG completion. Section 4 provides the

experiment results and ablation study. Section 5 discusses related

work. Finally, Section 6 concludes the paper.

2 PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we first present the preliminaries and notation

required to define the mixed-curvature space (more details can be

found in textbooks [28, 39]), including the Riemannian manifold,

constant-curvature space. Then we define the problem of mixed-

curvature multi-relational graph embedding for KG completion.

2.1 Riemannian Manifold
A manifold M of dimension 𝑑 is a generalization of higher di-

mensions of a surface. Let p ∈ M be a point, M is associated

with a tangent space 𝑇𝑝M — a 𝑑-dimensional vector space that

approximates M around p. A Riemannian metric assigns to each p
a positive-definite inner product 𝑔𝑝 : 𝑇𝑝M×𝑇𝑝M → R, along with
a norm | · |𝑝 : 𝑇𝑝M → R defined by |𝑣 |𝑝 =

√
𝑔𝑝 (𝑣, 𝑣). A manifold

M equipped with the metric 𝑔 is a Riemannian Manifold, denoted
(M, 𝑔). In particular, 𝑔 is used to define the distance (geodesics) of

two points on the manifold. A given 𝑔 also defines a curvature 𝐾 at

each point, which determines how the space is curved.

2.2 Constant-curvature Spaces
A constant-curvature space M𝑑

𝐾
is a Riemannian manifold with

curvature 𝐾 ∈ R and dimension 𝑑 ≥ 2, such thatM𝑑
𝐾
= {x ∈ R𝑑 :

⟨x, x⟩𝐼 = 1/𝐾} with 𝐼 denoting the inner product type. Specifically,

there exist three different types of constant-curvature space M
with respect to the sign of the curvature: hypersphere S𝐾 (posi-

tively curved space); Euclidean space E (flat space); and hyperboloid
H𝐾 (negatively curved space). Formally, these constant-curvature

Table 1: Definitions of three types of constant-curvature
spaces. ⟨·, ·⟩2 denotes the standard Euclidean inner prod-
uct and ⟨·, ·⟩L denotes the Lorentz inner product, such that
⟨x, y⟩L = −𝑥1𝑦1 +

∑𝑑+1
𝑖=2 𝑥𝑖𝑦𝑖 ,∀x, y ∈ R𝑑+1.

Space Curvature K Riemannian ManifoldM
S𝑑
𝐾

> 0 x ∈ R𝑑+1 : ⟨x, x⟩2 = 1/𝐾
E𝑑 0 R𝑑

H𝑑
𝐾

< 0 x ∈ R𝑑+1 : ⟨x, x⟩L = 1/𝐾

spaces are defined in Table 1. As the operations in some constant-

curvature spaces (hyperbolic and spherical spaces) are different

from those in Euclidean space, we also cover these operations and

summarize them in Table 2.

2.3 Problem Formulation
Let G = (E,R) be a KG with multiple relations, where E and R
represents the set of entities (nodes) and relations (edges), respec-

tively. A triple (𝑒ℎ, 𝑟 , 𝑒𝑡 ) ∈ E × R × E is represented as an edge 𝑟

between head entity 𝑒ℎ and tail entity 𝑒𝑡 in G. The objective is to
project entities 𝑒 ∈ E onto entity embeddings e ∈ U𝑑

and relations

𝑟 onto relation embeddings r ∈ U𝑑
, where the intrinsic heteroge-

neous structures of KG can be captured. Differently from previous

work that defines the embedding space in constant-curvature space,

such as Euclidean space R𝑑 or hyperbolic space H𝑑
𝐾
, we define

the embedding space in a mixed-curvature space P𝑑
𝐾
, such that

U𝑑 = P𝑑
𝐾
. In particular, the learned KG embeddings are used to

predict the target entity of a given query of head entity and relation,

𝑞 := (𝑒ℎ, 𝑟 , ?) such that the predicted tuple does not exist in G. We

also learn a scoring function 𝜙 : E × R → R, which assigns a score

𝑠 = 𝜙 (𝑒ℎ, 𝑟 , 𝑒𝑡 ) to each triple, indicating the probability with which

the prediction is a true fact.

3 MIXED-CURVATURE MULTI-RELATIONAL
GRAPH NEURAL NETWORK

In this section, we propose the mixed-curvature multi-relational

graph neural network (M
2
GNN). We start by introducing the de-

sign of the constant-curvature model. Then we describe how to

construct the mixed-curvature model. Next we present the graph

neural updater module. In the end, we provide the details of the

training and optimization of the proposed method.

3.1 Constant-curvature Models
As the the mixed-curvature model is constructed using constant-

curvature models, we first present the design of our constant-
curvature models. The translational distance model is a simple

and effective embedding approach for KG data modeling [24, 52],

which maps the entities and relations to the latent semantic space

and measures the distance between the relation-translated head

entity and the tail entity. In this work, we construct our constant-

curvature model in the form of translational distance as [1]. In

particular, given a triple (𝑒ℎ, 𝑟 , 𝑒𝑡 ) ∈ E × R × E, we define the

scoring function as follows:

𝜙 (𝑒ℎ, 𝑟 , 𝑒𝑡 ) = −𝑑 (𝑟 ) (eℎ, e𝑡 )2 + 𝑏ℎ + 𝑏𝑡 (1)
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Table 2: Summary of the operations in hyperbolic space H𝐾 / spherical space S𝐾 .

Operations Symbol hyperbolic space H𝐾 / spherical space S𝐾
Exponential map exp

𝐾
0
(·) exp

𝐾
0
(v) = tanh(

√
𝐾 | |v| |) v√

𝐾 | |v | |
Logarithmic map log

𝐾
0
(·) log

𝐾
0
(x) = tanh

−1 (
√
𝐾 | |x| |) x√

𝐾 | |x | |
Addition ⊕𝐾 x ⊕𝐾 y =

(1+2𝐾x𝑇 y+𝐾 | |y | |2)x+(1−𝐾 | |x | |2)y
1+2𝐾x𝑇 y+𝐾2 | |x | |2 | |y | |2

Scalar Multiplication ⊗𝐾 𝑟 ⊗𝐾 x = exp
𝐾
0
(𝑟 log𝐾

0
(x))

Matrix Multiplication ⊗𝐾 M ⊗𝐾 x = exp
𝐾
0
(M log

𝐾
0
(x))

Applying Function

- linear transform

- activation function

- element-wise multiplication

𝑓𝐾 (·) 𝑓𝐾 (x) = exp
𝐾
0
(𝑓 (log𝐾

0
(x)))

Distance function 𝑑 (M𝑑
𝐾
) (·, ·) 𝑑 (M𝑑

𝐾
) (x, y) =

2√
𝐾
tanh

−1 (
√
𝐾 | | − x ⊕𝐾 y| |)

where eℎ , e𝑡 ∈ U𝑑
are embeddings and 𝑏ℎ , 𝑏𝑡 ∈ R are scalar biases

of the head and tail entities 𝑒ℎ and 𝑒𝑡 , respectively. 𝑑
(𝑟 ) (·, ·) denotes

a distance function between a head entity and a entity over the

relation 𝑟 , which is the ℓ2 distance. First we define the constant-

curvature model in Euclidean space with zero-curvature. The score

function can be expressed as follows:

𝜙E𝑑 (𝑒ℎ, 𝑟 , 𝑒𝑡 ) = −𝑑 (𝑟 )
E𝑑

(oℎ, o𝑡 )2 + 𝑏ℎ + 𝑏𝑡

= −𝑑 (𝑟 )
E𝑑

(Roℎ, o𝑡 + r𝑜 )2 + 𝑏ℎ + 𝑏𝑡
(2)

where oℎ , o𝑡 ∈ E𝑑 are Euclidean embeddings of the head and tail

entities 𝑒ℎ and 𝑒𝑡 , respectively. R ∈ R𝑑×𝑑 represents a diagonal re-

lation matrix and r𝑜 ∈ E𝑑 denotes a relation embedding of relation

𝑟 . After applying a stretch R and a translational relation r𝑜 , we can
obtain the new representations of the head entity oℎ = Roℎ and

tail entity o𝑡 = o𝑡 + r𝑜 . However, the above model is in Euclidean

space, which has limited representation ability and cannot capture

complex structures, such as hierarchical and cyclic structures.

To address this issue, we propose the second constant-curvature

model, which maps the entities and relations onto a hyperbolic

space. Taking the hyperbolic analogue of Equation 2, the scoring

function can be rewritten as follows:

𝜙H𝑑
𝐾
(𝑒ℎ, 𝑟 , 𝑒𝑡 ) = −𝑑 (𝑟 )

H𝑑
𝐾

(hℎ, h𝑡 )2 + 𝑏ℎ + 𝑏𝑡

= −𝑑 (𝑟 )
H𝑑
𝐾

(
exp

𝐾
0

(
R log

𝐾
0
(hℎ)

)
, h𝑡 ⊕𝐾 rℎ

)
2

+ 𝑏ℎ + 𝑏𝑡
(3)

where hℎ, h𝑡 ∈ H𝑑𝐾 are hyperbolic embeddings of the head and tail

entities 𝑒ℎ and 𝑒𝑡 , respectively, and rℎ ∈ H𝑑
𝐾
represents a relation

embedding of relation 𝑟 in hyperbolic space. The resultant head

entity embedding hℎ ∈ H𝑑
𝐾
is computed by performing the matrix-

vector multiplication defined in Table 2, such that the original

entity hℎ ∈ H𝑑
𝐾
is projected to the tangent space of the Poincaré

ball at 𝑜 with log𝐾𝑜 (·), transformed by the diagonal relational matrix

R ∈ R𝑑×𝑑 , and then mapped back to the Poincaré ball by exp
𝐾
𝑜 (·).

The new tail entity embedding h𝑡 ∈ H𝑑
𝐾
is computed by adding

the relation embedding rℎ ∈ H𝑑
𝐾
to the tail entity embedding h𝑡 ∈

H𝑑
𝐾
. As the embedding space is defined in hyperbolic space, 𝐾 is a

negative constant value.

With the help of the hyperbolic model, hierarchical structures

can be captured. Because there are also rich cyclic structures in the

KG, the KG embedding also needs to capture cyclic data. To fill this

gap, we first attempt to design a constant-curvature model, which

maps the entities and relations onto spherical space. Similar to the

hyperbolic analogue of Equation 2, we define the scoring function

in spherical space as follows:

𝜙S𝑑
𝐾
(𝑒ℎ, 𝑟 , 𝑒𝑡 ) = −𝑑 (𝑟 )

S𝑑
𝐾

(sℎ, s𝑡 )2 + 𝑏ℎ + 𝑏𝑡

= −𝑑 (𝑟 )
S𝑑
𝐾

(
exp

𝐾
0

(
R log

𝐾
0
(sℎ)

)
, s𝑡 ⊕𝐾 r𝑠

)
2

+ 𝑏ℎ + 𝑏𝑡
(4)

where sℎ, s𝑡 ∈ S𝑑
𝐾
are spherical embeddings of the head and tail

entities 𝑒ℎ and 𝑒𝑡 , respectively, and r𝑠 ∈ S𝑑𝐾 is a spherical relation

embedding of relation 𝑟 . The new head entity embedding sℎ ∈ S𝑑
𝐾
is

computed by performing the matrix-vector multiplication defined

in Table 2. The new tail entity embedding s𝑡 ∈ S𝑑𝐾 is computed by

adding the relation embedding r𝑠 ∈ S𝑑𝐾 to the tail entity embedding

s𝑡 ∈ S𝑑𝐾 . As the embedding space is defined in spherical space, 𝐾 is

a positive constant value.

3.2 Mixed-curvature Model
Constant-curvature models can benefit from their specific bias to

better fit certain structure types. However, the real-world KG is

usually not structured uniformly and demonstrates intrinsic het-

erogeneous structures. To address this problem, we propose the

mixed-curvature model. In particular, we design and construct

the mixed-curvature space and project the KG entities and relations

onto it, in order to provide a space of heterogeneous curvature that

can capture the intrinsic heterogeneous structures in KGs.

We construct the mixed-curvature spaces by leveraging the prod-

uct of constant-curvature spaces. Specifically, our mixed-curvature

space is constructed by performing the Cartesian product of several

component constant-curvature spaces, such that P = ×𝑘
𝑖=1

M𝑑𝑖
𝑖
,

where × denotes the Cartesian product and 𝑘 denotes the number

of components. Here, each component spaceM𝑑𝑖
𝑖

∈ {E,H, S} is a
𝑑𝑖−dimensional constant-curvature space, with curvature 𝐾𝑖 . By
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fusing all the components, the curvature of the new space demon-

strates the non-constant curved property. The distance function

in the constructed mixed-curvature space can be obtained by per-

forming decomposition as follows:

𝑑ℓP (x, y) =
𝑘∑
𝑖=1

𝑑ℓ

M𝑑𝑖
𝑖

(x(𝑖) , y(𝑖) ) (5)

where x(𝑖) denotes a embedding inM𝑑𝑖
𝑖

and ℓ represents the norm
indicator.

This distance function enables us to introduce combinatorial

constructions, which provide simple and interpretable embedding

spaces. Since all operations defined on our manifolds are element-

wise, we can decompose it into parts x(𝑖) and apply the operation

𝑓
𝑑𝑖
𝑖

(x(𝑖) ). Then the result of each part is 𝑥 (𝑖) . The final result is the
combination of the resulting parts 𝑥 = ⊙𝑘

𝑖=1
𝑥 (𝑖) , where ⊙ denotes

the combining operation for the individual parts.

Our mixed-curvature space is described by the signature, a pa-

rameterization, including several degrees of freedom per compo-

nent: the space typeM𝑖 , the dimensionality 𝑑𝑖 , and the curvature

𝐾𝑖 . It is required to select all three parameters for every component

in the product space. For 𝑑1, ..., 𝑑𝑘 ∈ Z, such that

∑𝑘
𝑖=1 𝑑𝑖 = 𝑑 ∈ Z,

the Cartesian product of Euclidean space is E𝑑 = ×𝑘
𝑖=1
E𝑑𝑖 . Since

the product space can be decomposed into three types of spaces

(spherical, hyperbolic and Euclidean), all vector-like operations can

be conducted in the corresponding space component.

After we define and construct the mixed-curvature space, we

design the scoring function for KG entities and relations in the

mixed-curvature product space as follows:

𝜙
P
{𝑑𝑜 ,𝑑ℎ,𝑑𝑠 }
{𝐾𝑜 ,𝐾ℎ,𝐾𝑠 }

(𝑒ℎ, 𝑟 , 𝑒𝑡 ) = −𝑑 (𝑟 )
P
{𝑑𝑜 ,𝑑ℎ,𝑑𝑠 }
{𝐾𝑜 ,𝐾ℎ,𝐾𝑠 }

(pℎ, p𝑡 )2 + 𝑏ℎ + 𝑏𝑡

= −
(
𝑑
(𝑟 )
H
𝑑ℎ
𝐾ℎ

(hℎ, h𝑡 )2 + 𝑑
(𝑟 )
S𝑑𝑠
𝐾𝑠

(sℎ, s𝑡 )2

+ 𝑑 (𝑟 )
E𝑑𝑜

(oℎ, o𝑡 )2
)
+ 𝑏ℎ + 𝑏𝑡

= −
(
𝑑
(𝑟 )
H
𝑑ℎ
𝐾ℎ

(
exp

𝐾ℎ
0

(
R log

𝐾ℎ
0

(hℎ)
)
, h𝑡 ⊕𝐾ℎ rℎ

)
2

+ 𝑑 (𝑟 )
S𝑑𝑠
𝐾𝑠

(
exp

𝐾𝑠
0

(
R log

𝐾𝑠
0

(sℎ)
)
, s𝑡 ⊕𝐾𝑠 r𝑠

)
2

+ 𝑑 (𝑟 )
E𝑑𝑜

(Roℎ, o𝑡 + r𝑜 )2
)
+ 𝑏ℎ + 𝑏𝑡

(6)

where pℎ, p𝑡 ∈ P
{𝑑𝑜 ,𝑑ℎ,𝑑𝑠 }
{𝐾𝑜 ,𝐾ℎ,𝐾𝑠 }

are mixed-curvature space embeddings

of the head and tail entities 𝑒ℎ and 𝑒𝑡 , respectively. 𝑑𝑜 , 𝑑ℎ, 𝑑𝑠 are the

dimensions of the component spaces of Euclidean, hyperbolic, and

spherical. 𝐾ℎ, 𝐾𝑠 are the curvatures of the component spaces of the

hyperbolic and spherical spaces. As the curvature of Euclidean is 0,

𝐾𝑜 = 0. Though performing optimization in the mixed-curvature

space is challenging, our objective is a distance function. Based on

the decomposable property of the mixed-curvature space, we can

follow Equation 5 and decompose the distance function 𝑑
P
{𝑑𝑜 ,𝑑ℎ,𝑑𝑠 }
{𝐾𝑜 ,𝐾ℎ,𝐾𝑠 }

to be the sum of the distance functions of each component space.

Then, we can just optimize the scoring function as in constant-

curvature space.

3.3 Graph Neural Updater
The translational distance model learns embeddings with simple op-

erations and limited parameters. Recent work [2, 34, 40] applies the

graph neural network (GNN) to KG completion and demonstrates

the improved performance by leveraging the local neighborhood

of a triple. Non-GNN models cannot capture the complex context

information and are restricted on the quality of the learned embed-

ding [24, 52]. As the developed mixed-curvature model is designed

in the translational distance manner, it suffers from the same lim-

itation as other translational distance models. To overcome this

problem, we propose the graph neural updater, a graph-neural-
network-based embedding updating module to aggregate the entity

and relation embedding features in the neighborhood of each en-

tity and update the embedding representation of each entity and

relation. Formally, we define our graph neural updater as follows:
1

e′𝑖 = GNN(e𝑗 , r𝑘 | 𝑗 ∈ N𝑖 , 𝑘 ∈ R𝑖 𝑗 ) (7)

where e′
𝑖
denotes the updated embedding of the target entity 𝑒𝑖 ,

e𝑗 denotes the embedding of the tail entity 𝑒 𝑗 connecting to the

target entity 𝑒𝑖 with the embedding e𝑖 corresponding to the relation
𝑟𝑘 , N𝑖 denotes the neighborhood of entity 𝑒𝑖 and R𝑖 𝑗 denotes the
relations connecting entities 𝑒𝑖 and 𝑒 𝑗 . As KG is a multi-relational

graph, both the entity and relation embeddings lie in the same

embedding space. The relational context of an entity should include

both entity neighbor and relation neighbor. We define a message

embedding m𝑖 𝑗𝑘 to capture the relational context. Following [34],

it is computed by concatenating entity and relation embeddings

for a specific triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) followed by a linear transformation.

Formally, it is defined as follows:

m𝑖 𝑗𝑘 = W1 ⊗𝐾 [e𝑖 | |e𝑗 | |r𝑘 ] (8)

where W1 denotes the linear transformation matrix and ⊗𝑐 indi-
cates the matrix multiplication in the constant-curvature space. As

the importance of the neighborhood is usually quite different [49],

treating each relational context equally is not appropriate. There-

fore, we introduce the importance of each relational context and

learn the importance of each message embedding. In particular, we

first apply the linear transformation with a matrix W2 and then

employ a LeakyReLU activation function. The message importance

can be computed as follows:

𝑏𝑖 𝑗𝑘 = exp
𝐾
0
(LeakyReLU(log𝐾

0
(W2 ⊗𝐾 m𝑖 𝑗𝑘 )) (9)

Next we compute the attention value of eachmessage embedding

by employing the softmax function over 𝑏𝑖 𝑗𝑘 as follows:

𝛼𝑖 𝑗𝑘 = softmax𝑗𝑘 (𝑏𝑖 𝑗𝑘 ) =
exp (𝑏𝑖 𝑗𝑘 )∑

𝑣∈N𝑖
∑
𝑞∈R𝑖𝑣 exp (𝑏𝑖𝑣𝑞)

(10)

Then we compute the updated entity embedding. As suggested

in [49], using a multi-head mechanism. Thus the updated entity

embedding with 𝑁 -head attention is computed as follows:

e𝑖 =∥𝑁𝑛=1 𝜎𝐾
©«
∑
𝑗 ∈N𝑖

∑
𝑘∈R𝑖 𝑗

𝛼𝑛
𝑖 𝑗𝑘

⊗𝐾 m𝑛
𝑖 𝑗𝑘

ª®¬ (11)

1
In this subsection, we describe the graph neural updater in the constant-curvature

space and remove the subscripts of space indicator for all embedding related symbols

for simplicity.
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To obtain the updated embedding of the relation, a linear transfor-

mation is employed:

r′
𝑘
= W𝑟𝑒𝑙 ′ ⊗𝐾 r𝑘 (12)

where W𝑟𝑒𝑙 ′ denotes the parameterized linear transformation ma-

trix for relation embedding mapping. In particular, we perform

two iterations of embedding update to capture two-hop relational

context. In the second iteration, we obtain the updated entity em-

bedding e′′
𝑖
by averaging (instead of concatenating) the embeddings

from multiple heads by:

e′′𝑖 = 𝜎𝐾
©« 1

𝑁

𝑁∑
𝑛=1

∑
𝑗 ∈N𝑖

∑
𝑘∈R𝑖 𝑗

𝛼𝑛
𝑖 𝑗𝑘

⊗𝐾 m′𝑛
𝑖 𝑗𝑘

ª®¬ (13)

To get the final updated embedding e𝑓 𝑖𝑛𝑎𝑙
𝑖

while keeping the initial

embedding information, we further employ a linear transformation

layer to fuse the initial embedding with the new embedding:

e𝑓 𝑖𝑛𝑎𝑙
𝑖

= (W3 ⊗𝐾 e𝑖 ) ⊕𝐾 e′′𝑖 (14)

where W3 is a weight matrix for fusion of original and new entity

embeddings. With the help of the graph neural updater, we can

selectively gather the multi-hop context information to capture the

heterogeneous structures in the mixed-curvature space.

3.4 Training and Optimization
To train our proposed M

2
GNN model, Ne negative samples are

constructed for each triple (𝑒ℎ, 𝑟 , 𝑒𝑡 ) by performing corruption on

either the head (𝑒ℎ, 𝑟 , 𝑒 ′𝑡 ) or the tail (𝑒𝑡 , 𝑟−1, 𝑒 ′ℎ) entity with a ran-

domly chosen new entity. Our objective is to minimize the Bernoulli

negative log-likelihood loss as follows:

L(𝑦, 𝑝) = − 1

𝑁

𝑁∑
𝑖=1

(𝑦 (𝑖) ) log(𝑝 (𝑖) ) + (1 − 𝑦 (𝑖) )𝑙𝑜𝑔(1 − 𝑝 (𝑖) ) (15)

where 𝑝 denotes the predicted probability, 𝑦 denotes the binary

label indicating whether a sample fact is available or not and 𝑁 is

the number of training samples. To optimize the proposed model,

we define all parameters in the tangent space at the origin [7].

As discussed in the previous subsection, the mixed-curvature

space is parameterized by the signature (space type, curvature, and

dimensionality). For the space type, we use the combination of three

constant-curvature space components (hyperbolic space, spherical

space and Euclidean space) to cover the intrinsic heterogeneous

structures of the KGs. For the curvatures of each constant-curvature

space component (𝐾ℎ for hyperbolic space and 𝐾𝑠 for spherical

space), they are typically fixed and need to be manually defined

through domain knowledge and data analysis. Improperly defined

curvatures cannot capture the intrinsic heterogeneous structures

of KGs accurately. To address this problem, we propose a trainable

curvature for each constant-curvature space component. As our loss

function is differentiable with respect to these curvatures, we treat

these curvatures as parameters of the model and learn them using

gradient based optimization. For the dimensionality, we set the

dimension of each constant-curvature space component to be the

same and propose space weights to balance each constant-curvature

space component. In particular, if the hyperbolic space weight is

𝜆 ∈ {0, 1}, the spherical spaceweight is 𝜇 ∈ {0, 1}, and the Euclidean
space weight is (1 − 𝜆 − 𝜇) ∈ {0, 1}, that is, 𝜇 + 𝜆 + (1 − 𝜆 − 𝜇) = 1,

then a trade-off is established: as we increase (resp. decrease) one

of the three weights, the other two will decrease (resp. increase).

However, the space weight setting also requires prior knowledge

or human-engineering. We address this problem by proposing the

trainable space weights and search the proper space weight in a

data-driven way. Then Equation 6 can be rewritten as follows:

𝜙
P
{𝑑𝑜 ,𝑑ℎ,𝑑𝑠 }
{𝐾𝑜 ,𝐾ℎ,𝐾𝑠 }

(𝑒ℎ, 𝑟 , 𝑒𝑡 ) = −
(
𝜆𝑑

(𝑟 )
H
𝑑ℎ
𝐾ℎ

(hℎ, h𝑡 )2 + 𝜇𝑑
(𝑟 )
S𝑑𝑠
𝐾𝑠

(sℎ, s𝑡 )2

+ (1 − 𝜆 − 𝜇)𝑑 (𝑟 )
E𝑑𝑜

(oℎ, o𝑡 )2
)
+ 𝑏ℎ + 𝑏𝑡

= −
(
𝜆𝑑

(𝑟 )
H
𝑑ℎ
𝐾ℎ

(
exp

𝐾ℎ
0

(
R log

𝐾ℎ
0

(hℎ)
)
, h𝑡 ⊕𝐾ℎ rℎ

)
2

+ 𝜇𝑑 (𝑟 )
S𝑑𝑠
𝐾𝑠

(
exp

𝐾𝑠
0

(
R log

𝐾𝑠
0

(sℎ)
)
, s𝑡 ⊕𝐾𝑠 r𝑠

)
2

+ (1 − 𝜆 − 𝜇)𝑑 (𝑟 )
E𝑑𝑜

(Roℎ, o𝑡 + r𝑜 )2
)
+ 𝑏ℎ + 𝑏𝑡

(16)

4 EXPERIMENTS AND RESULTS
In this section, we evaluate the proposed M

2
GNN model, and

present its performance on three KG datasets. We first introduce

the experimental setup. Next, we show the effectiveness of the pro-

posed M
2
GNN model. We further conduct several ablation studies

to demonstrate the effectiveness of each proposed module.

4.1 Experimental Setup
4.1.1 Datasets. We evaluate our proposed models on the KG com-

pletion task using WN18RR [45], FB15k-237 [12] and YAGO3-10

[32], in order to cover different structures and scales. We summarize

the data statistics in Table 3.

4.1.2 Baselines. We compare the proposed method to state-of-

the-art single-curvature embedding based KG completion methods

defined in different spaces, as follows:

• RESCAL [38]: Euclidean embedding models with each rela-

tion as a full rank matrix.

• TransE [5]: First translational distance Euclidean embed-

ding.

• DisMult [5]: Euclidean embedding models with a diagonal

relational matrix.

• MuRE [1]: Translational distance Euclidean embeddingwith

a diagonal relational matrix.

• ComplEx [46]: Extension of DisMult in a complex space.

• RotatE [43]: Extension of TransE in a complex space with

modulus part and phase part.

• Conve [12]: NN-based method with score function defined

by a convolutional neural network.

• CompGCN [47]: NN-based method with score function de-

fined by a graph convolutional network.

• A2N [2]: NN-based method with score function defined by

a graph attentional network.

• MuRP [1]: Translational distance hyperbolic embedding

with a diagonal relational matrix.
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Table 3: Dataset statistics.

Dataset #Entity #Relation #Train #Valid #Test Structure Heterogeneity Scale

WN18RR 40,943 11 86,835 3,034 3,134 Low Small

FB15-237 14,541 237 272,115 17,535 20,466 High Medium

YAGO3-10 123,182 37 1,079,040 5000 5000 Low Large

Baseline results in Subsection 4.2 are taken from the original papers.

The rest of the baseline results are obtained by open-source im-

plementations of each model, where we perform hyper-parameter

search over the same parameters suggested by the original papers.

4.1.3 Ablations. To analyze the advantage of mixed-curvature ge-

ometry, we consider several variants of the proposed method with-

out the GNN module, including:

• MuRS – multi-relational spherical embedding.

• MuRMP – multi-relational mixed-curvature space embed-

ding with fixed curvature [1,-1].

• MuRMP-autoK – multi-relational mixed-curvature space

embedding with learnable curvature.

• MuRMP-autoT – multi-relational mixed-curvature space

embedding with learnable space weight.

• MuRMP-autoKT – multi-relational mixed-curvature space

embedding with learnable curvature and space weight.

Also, we consider the following variants to analyze the advantage

of GNN:

• M2noGNN – mixed-curvature space embedding without

the GNN updater.

• H2GCN – mixed-curvature space embedding with the GCN

updater.

• H2-khead – mixed-curvature space embedding with a k-

head attentional GNN updater.

4.1.4 Implementation Details. Following previous KG completion

work [5], we use MRR and Hits@K as evaluation metrics. We per-

form the optimization in tangent space [7] and use standard Eu-

clidean optimizers. We implement the proposed method in PyTorch

and conduct the experiments on NVIDIA Tesla V100 GPU. For our

proposed model, we conduct a hyperparameter search on dimen-

sionality, learning rate, optimizer, negative sample size, batch size

and number of attention heads. We report the best hyperparame-

ters (dimensionality, learning rate, optimizer, negative sample size,

batch size and number of attention heads) for each dataset as fol-

lows: {WN18RR: 200, 0.001, Adam, 500, 500, 4}, {FB15k-237: 200, 0.05,

Adagrad, 500, 500, 4}, {YAGO3-10: 500, 0.005, Adam, 250, 500, 4}.

4.2 Overall Results
In this subsection, we compare the proposed method with existing

state-of-the-art methods and some ablations with different geom-

etry space. The experimental results are shown in Table 4. As we

can see, the proposed M
2
GNN outperforms all the baselines on

all three datasets with various typed structures, which verifies

the effectiveness of the proposed methods in capturing intrinsic

heterogeneous structures in KG. We also observe that the mixed-

curvature methods outperform the single-curvature methods, while

the performance of single-curvature methods varies depending on

the datasets. Compared with mixed-curvature method with fixed

curvatures or fixed space weights, learnable curvatures and space

weights improve the performance significantly. Another interesting

fact is that GNN-based methods achieve best performance on all

the datasets, which shows the benefit of relational context.

4.3 Ablations on Graph Neural Network
In this subsection, we study the effectiveness of the graph neural

updater module. The ablation results on the WN18RR and FB15k-

237 datasets are shown in Table 5. M
2
noGNN denotes the results

without the graph neural updater. M
2
GCN denotes the results with

the graph convolutional updater. M
2
GAT-𝑘head denotes the results

with the proposed graph neural updater with 𝑘 heads. We can

observe that the GNN model outperforms the non-GNN model.

The proposed graph neural updater with one head has similar

performance to the graph convolutional variants. When the number

of heads increases, the performance also improves.

4.4 Ablations on Dimensionality
In this subsection, we investigate the role of dimensionality. We

conduct experiments on WN18RR and report the MRR of mixed-

curvaturemodel (MuRMP-autoKT,MuRMP) against single constant-

curvature space methods (MuRS, MuRP, and MuRE) and dimension

𝑑 ∈ {10, 15, 20, 40, 100, 200, 400}. Fig. 2 shows the results, which are

obtained by averaging over 10 runs. As expected, MuRMP-autoKT

achieves the best performance across a broad range of dimensions.

Its variant MuRMP is less stable, since it uses fixed curvature values

and space weights and cannot capture the intrinsic heterogeneous

structures very well. As WNRR18 has rich hierarchical structures,

both the proposed mixed-curvature models andMuRP achieve good

performance when the dimensionality is low.

4.5 Ablations on Relation Type
In this subsection, we investigate how the performance of the

proposed method is affected by relation types on WN18RR. We

report a number of metrics to describe each relation, including

global graph curvature (𝜉𝐺 ) [17] and Krackhardt hierarchy score

(Khs) [27]. These two metrics are used to justify if the given data

have a rich hierarchical structure. Specifically, we compare aver-

aged hits@10 over 10 runs for each relations of MuRMP-autoKT,

MuRMP, MuRS, MuRP and MuRE for entity embeddings of low

dimensionality (d = 20). From Table 6 we can see that the proposed

mixed-curvature model MuRMP-autoKT outperforms its variant

with fixed-curvature and fixed space weights. Besides, it also outper-

forms all the single constant-curvature methods. The experiments

verify the effectiveness of the proposed method in dealing with

heterogeneous types of data.
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Table 4: KG completion results for embeddings on WN18RR, FB15k-237, and YAGO3-10. The best results are in bold and the
second best results are underlined.

M Model

WN18RR FB15k-237 YAGO3-10

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@1 H@10

R RESCAL .420 - - .447 .270 - - - - - -

R TransE .226 - - .501 .294 - - .465 - - - -

R DisMult .430 .390 .440 .490 .241 .155 .263 .419 .340 .240 .380 .540

R ConvE .430 .400 .440 .520 .325 .237 .356 .501 .440 .350 .490 .620

R MuRE .465 .436 .487 .554 .336 .245 .370 .521 .532 .444 .584 .694

R CompGCN .479 .443 .494 .546 .355 .264 .390 .535 .489 .395 .500 .582

R A2N .430 .410 .440 .510 .317 .232 .348 .486 .445 .349 .482 .501

C ComplEx .440 .410 .460 .510 .247 .158 .275 .428 .360 .260 .400 .550

C RotatE .476 .428 .492 .571 .338 .241 .375 .533 .495 .402 .550 .670

H MuRP .481 .440 .495 .566 .335 .243 .367 .518 .354 .249 .400 .567

S MuRS .454 .432 .482 .550 .338 .249 .373 .525 .351 .244 .382 .562

P MuRMP .473 .435 .485 .552 .345 .258 .385 .542 .358 .248 .389 .566

P MuRMP-autoK .476 .435 .488 .556 .352 .261 .388 .544 .361 .252 .394 .569

P MuRMP-autoT .479 .438 .489 .559 .357 .267 .393 .550 .471 .385 .503 .609

P MuRMP-autoKT .481 .441 .496 .569 .358 .273 .394 .561 .495 .448 .591 .698

P M
2
GNN .485 .444 .498 .572 .362 .275 .398 .565 .543 .478 .605 .702

Table 5: Ablation results on the WN18RR and FB15k-237 datasets. We compare variants of the proposed model with various
graph neural network settings.

Model

WN18RR FB15k-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CompGCN .479 .443 .494 .546 .355 .264 .390 .535

A2N .430 .410 .440 .510 .317 .232 .348 .486

M
2
noGNN .481 .441 .496 .571 .358 .273 .394 .561

M
2
GCN .482 .442 .496 .570 .360 .274 .396 .563

M
2
GAT-1head .479 .442 .494 .565 .359 .273 .396 .562

M
2
GAT-4head .485 .444 .498 .572 .362 .275 .398 .565

Table 6: Comparison of hits@10 for WN18RR with 𝑑 = 20. Average computed over 10 runs.

WN relation name 𝜉𝐺 Khs MuRE MuRP MuRS MuRMP MuRMP-autoKT

also_see -2.09 .24 .634 .705 .483 .692 .725
hypernym -2.46 .99 .161 .228 .126 .222 .232
has_part -1.43 1 .215 .282 .301 .134 .316
member_meronym -2.90 1 .272 .346 .138 .343 .350
synset_domain_topic_of -0.69 .99 .316 .430 .163 .421 .445
instance_hypernum -0.82 1 .488 .471 .258 .345 .491
member_of_domain_region -0.78 1 .308 .347 .201 .344 .349
member_of_domain_usage -0.74 1 .396 .417 .228 .416 .420
derivationally_related _form -3.84 .04 .954 .967 .965 .967 .970
similar_to -1.00 0 1 1 1 1 1
verb_group -0.5 0 .974 .974 .976 .976 .981

4.6 Ablations on Curvatures and Space Weights
It is important to set the curvature of the constant-curvature space

and the space weights correctly. These parameter sets provide flex-

ibility for the model to capture the intrinsic heterogeneous struc-

tures in KG data. Specifically, we report the learned curvatures and

space weights for each dataset in Table 7. The results show that for

datasets with rich hierarchical structures (WN18RR, YAGO3-10),

the hyperbolic curvature values as compared with those of the other

set (FB15k-237) are about 30% smaller and the hyperbolic space

weights are approximately double. The spherical space weight value

for set FB15k-23 is larger than those of the other two sets.
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Figure 2: MRR as a function of the embedding dimension
with 𝑑 ∈ {10, 15, 20, 40, 100, 200, 500} on the WN18RR dataset.
Average computed over 10 runs.

Table 7: Comparison of parameters—curvature value and
space weight—for hyperbolic and spherical space—in three
datasets.

Parameters WN18RR FB15k-237 YAGO3-10

Hyperbolic Curvature -1.263 -0.351 -1.180

Spherical Curvature 0.184 1.112 0.215

Hyperbolic space weight 0.623 0.324 0.587

Spherical space weight 0.198 0.338 0.275

5 RELATEDWORK
Our work is related to knowledge graph completion and non-

Euclidean embedding. We briefly discuss them in this section.

5.1 Knowledge Graph Completion
5.1.1 Euclidean Embedding Models. Euclidean embedding models

for KG completion have been extensively studied. They typically

assign an embedding vector to each entity and relation in the Eu-

clidean embedding space and train the embeddings based on ob-

served facts. Examples include the following Euclidean translational

models: TransE [5], TransD [23], TransH [56], and TransR [30].

There are also Euclidean bilinear models, such as RESCAL [38]

and DistMult [60]. More recently, extensions of Euclidean embed-

dings in complex space have been proposed, such as ComplEx [46],

RotatE [43], HAKGE [18], and HAKE [62]. These methods only

consider Euclidean distance between the translated head entity

embedding and tail entity embedding, which cannot capture the

intrinsic heterogeneity of KG structures.

5.1.2 Neural Network Models. Neural network models have at-

tracted considerable research interest in recent years. They map

entities and relations into the embedding space using a neural

network in an end-to-end manner. Based on the type of neural net-

work, we can categorize these methods in three groups: NN-based

model [14, 42], which uses fully connected neural networks, CNN-

based model [12, 12], which uses convolutional neural networks,

and GNN-based model, which uses graph neural networks [2, 34,

40]. These methods can learn the KG embedding automatically in

a data driven way, but they still assume the embedding space is

Euclidean. Thus, they still fail to capture the intrinsic heterogeneity

of KG structures.

5.1.3 Hyperbolic Embedding Models. Hyperbolic embedding mod-

els include MuRP [1], which develops the hyperbolic analogy of the

translational distance model for KG embeddings for the completion

task and AttH [6], which builds a rotation based model in hyper-

bolic space for KG embeddings [6]. Because these two methods only

consider a specific negative-curvature space, they are not flexible

to other type of structures and therefore fail to capture the intrinsic

heterogeneity of KG structures.

5.2 Non-Euclidean Embedding
5.2.1 Single-curvature Models. Embedding data in non-Euclidean

space (constant non-zero curvature space) has attracted consider-

able attention. [36] defined the WordNet non-embedding space in

the Poincaré ball and shows the significant gain over Euclidean

embeddings in a low-dimensional setting. [37] embeds hierarchical

data in the Lorentz hyperbolic space. Some later work redefines

and develops the existing algorithms in hyperbolic space, such as

Poincaré GloVe [44], Hyperbolic Attention Networks [19] and Hy-

perbolic Graph Convolutional Neural Networks [7]. These works

study the embedding in hyperbolic space with negative curvature.

On the other hand, some researchers study the embedding in spher-

ical space with positive curvature and show that a spherical em-

bedding can better capture a cyclic structure, such as directional

data. [9, 59] develop the Spherical Variational Autoencoders and

apply them in language and document modeling. [33] proposes a

spherical generative model and learns word and paragraph embed-

dings jointly. Among these approaches, only negative-curvature

models are considered for the multi-relational KG completion task.

5.2.2 Mixed-curvature Models. Noticing that data can be non-uni-

formly structured, researchers have studied embeddings in mixed-

curvature space. [17, 41] construct a mixed-curvature space by

multiplying manifolds with different curvatures and show the flexi-

bility in dealing with data with rich structures. Though they study

non-Euclidean geometry for intrinsic heterogeneous structures,

their focus is on unsupervised embeddings and they only consider

homogeneous relation (with only one relation type), which cannot

be applied directly to address the multi-relational KG embedding

problem. Furthermore, they required manually defining the fixed

curvatures using domain knowledge and additional data analysis,

which is difficult to obtain.

6 CONCLUSION
We develop a novel Mixed-curvature Multi-relational Graph Neural

Network (M
2
GNN) for knowledge graph completion. The mixed-

curvature space is constructed by a tractable Riemannian prod-

uct manifold, which combines Euclidean, spherical, and hyper-

bolic spaces. Benefiting from mixed-curvature space modeling, our

method improves multi-relational graph representations by better

capturing the intrinsic heterogeneous structures in KGs. Further-

more, the proposed method can adaptively aggregate the relational
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context information in the mixed-curvature space and improve the

embedding quality.
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