-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathdigit-operations-to-make-two-integers-equal.py
53 lines (48 loc) · 1.61 KB
/
digit-operations-to-make-two-integers-equal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Time: O(nlogn)
# Space: O(n)
import heapq
# number theory, dijkstra's algorithm
class Solution(object):
def minOperations(self, n, m):
"""
:type n: int
:type m: int
:rtype: int
"""
def linear_sieve_of_eratosthenes(n): # Time: O(n), Space: O(n)
primes = []
spf = [-1]*(n+1) # the smallest prime factor
for i in xrange(2, n+1):
if spf[i] == -1:
spf[i] = i
primes.append(i)
for p in primes:
if i*p > n or p > spf[i]:
break
spf[i*p] = p
return spf
def dijkstra(start, target):
if spf[start] == start:
return -1
lookup = set()
min_heap = [(start, start)]
while min_heap:
curr, i = heapq.heappop(min_heap)
if i in lookup:
continue
lookup.add(i)
if i == target:
return curr
base = 1
while base <= i:
x = i//base
for d in (-1, 1):
if (1 if x <= 9 else 0) <= x%10+d <= 9 and spf[i+d*base] != i+d*base and i+d*base not in lookup:
heapq.heappush(min_heap, (curr+(i+d*base), i+d*base))
base *= 10
return -1
base = 1
while base < max(n, m):
base *= 10
spf = linear_sieve_of_eratosthenes(base)
return dijkstra(n, m)