-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgym_addpg.py
executable file
·160 lines (152 loc) · 5.06 KB
/
gym_addpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import random
import os
import time
import sys
import argparse
import filter_env
from gym import wrappers
from ddpg import *
import gc
gc.enable()
FLAGS=None;
ENV_NAME = 'Reacher-v1'
EPISODES = 100000
local_step=1
TEST=10
def train():
# parameter server and worker information
ps_hosts = np.zeros(FLAGS.ps_hosts_num,dtype=object);
worker_hosts = np.zeros(FLAGS.worker_hosts_num,dtype=object);
port_num=FLAGS.st_port_num;
for i in range(FLAGS.ps_hosts_num):
ps_hosts[i]=str(FLAGS.hostname)+":"+str(port_num);
port_num+=1;
for i in range(FLAGS.worker_hosts_num):
worker_hosts[i]=str(FLAGS.hostname)+":"+str(port_num);
port_num+=1;
ps_hosts=list(ps_hosts);
worker_hosts=list(worker_hosts);
# Create a cluster from the parameter server and worker hosts.
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
# Create and start a server for the local task.
server = tf.train.Server(cluster,
job_name=FLAGS.job_name,
task_index=FLAGS.task_index)
if FLAGS.job_name == "ps":
server.join();
elif FLAGS.job_name == "worker":
device=tf.train.replica_device_setter(
worker_device="/job:worker/task:%d" % FLAGS.task_index,
cluster=cluster);
#tf.set_random_seed(1);
# env and model call
env = filter_env.makeFilteredEnv(gym.make(ENV_NAME))
agent = DDPG(env,device)
# prepare session
with tf.device(tf.train.replica_device_setter(
worker_device="/job:worker/task:%d" % FLAGS.task_index,
cluster=cluster)):
global_step = tf.get_variable('global_step',[],initializer=tf.constant_initializer(0),trainable=False);
global_step_ph=tf.placeholder(global_step.dtype,shape=global_step.get_shape());
global_step_ops=global_step.assign(global_step_ph);
score = tf.get_variable('score',[],initializer=tf.constant_initializer(-21),trainable=False);
score_ph=tf.placeholder(score.dtype,shape=score.get_shape());
score_ops=score.assign(score_ph);
init_op=tf.global_variables_initializer();
# summary for tensorboard
tf.summary.scalar("score", score);
summary_op = tf.summary.merge_all()
saver = tf.train.Saver();
sv = tf.train.Supervisor(is_chief=(FLAGS.task_index == 0),
global_step=global_step,
logdir=FLAGS.log_dir,
summary_op=summary_op,
saver=saver,
init_op=init_op)
with sv.managed_session(server.target) as sess:
agent.set_sess(sess);
while True:
if sess.run([global_step])[0] > EPISODES:
break
score=0;
for ls in range(local_step):
state = env.reset();
for step in xrange(env.spec.timestep_limit):
action = agent.noise_action(state)
next_state,reward,done,_ = env.step(action)
agent.perceive(state,action,reward,next_state,done)
state = next_state
if done:
break;
for i in xrange(TEST):
state = env.reset()
for j in xrange(env.spec.timestep_limit):
#env.render()
action = agent.action(state) # direct action for test
state,reward,done,_ = env.step(action)
score += reward
if done:
break
sess.run(global_step_ops,{global_step_ph:sess.run([global_step])[0]+local_step});
sess.run(score_ops,{score_ph:score/TEST/200});
print(str(FLAGS.task_index)+","+str(sess.run([global_step])[0])+","+str(score/TEST/200));
sv.stop();
print("Done");
def main(_):
#os.system("rm -rf "+FLAGS.log_dir);
FLAGS.ps_hosts_num+=1;
FLAGS.worker_hosts_num+=1;
train()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.register("type", "bool", lambda v: v.lower() == "true")
# Flags for defining the tf.train.ClusterSpec
parser.add_argument(
"--ps_hosts_num",
type=int,
default=5,
help="The Number of Parameter Servers"
)
parser.add_argument(
"--worker_hosts_num",
type=int,
default=10,
help="The Number of Workers"
)
parser.add_argument(
"--hostname",
type=str,
default="jaesik-System-Product-Name",
help="The Hostname of the machine"
)
parser.add_argument(
"--st_port_num",
type=int,
default=2222,
help="The start port number of ps and worker servers"
)
parser.add_argument(
"--job_name",
type=str,
default="",
help="One of 'ps', 'worker'"
)
# Flags for defining the tf.train.Server
parser.add_argument(
"--task_index",
type=int,
default=0,
help="Index of task within the job"
)
# Log folder
parser.add_argument(
"--log_dir",
type=str,
default="/tmp/addpg_log/",
help="log folder name"
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)