11
11
DT_WARN = "Small increment encountered, may have trouble reaching T."
12
12
13
13
14
- class G1Renewal :
14
+ class GeneralizedOneRenewal :
15
+ """
16
+ A class to handle the generalized renewal process with different Kijima
17
+ models.
18
+
19
+ Since the Generalised One Renewal Process does not have closed form
20
+ solutions for the instantaneous intensity function and the cumulative
21
+ intensity function these values cannot be calculated directly with this
22
+ class. Instead, the model can be used to simulate recurrence data which is
23
+ fitted to a ``NonParametricCounting`` model. This model can then be used
24
+ to calculate the cumulative intensity function.
25
+
26
+ Examples
27
+ --------
28
+ >>> from surpyval import GeneralizedOneRenewal, Weibull
29
+ >>> import numpy as np
30
+ >>>
31
+ >>> x = np.array([1, 2, 3, 4, 4.5, 5, 5.5, 5.7, 6])
32
+ >>>
33
+ >>> model = GeneralizedOneRenewal.fit(x, dist=Weibull)
34
+ >>> model
35
+ G1 Renewal SurPyval Model
36
+ =========================
37
+ Distribution : Weibull
38
+ Fitted by : MLE
39
+ Restoration Factor : -0.1730184624683848
40
+ Parameters :
41
+ alpha: 1.3919045967886952
42
+ beta: 5.0088611892336115
43
+ >>>
44
+ >>> np.random.seed(0)
45
+ >>> np_model = model.count_terminated_simulation(len(x), 5000)
46
+ >>> np_model.mcf(np.array([1, 2, 3, 4, 5, 6]))
47
+ array([0.1696 , 1.181 , 2.287 , 3.6694 , 5.58237925,
48
+ 8.54474531])
49
+ """
50
+
15
51
def __init__ (self , model , q ):
16
52
self .model = model
17
53
self .q = q
18
54
55
+ def __repr__ (self ):
56
+ out = (
57
+ "G1 Renewal SurPyval Model"
58
+ + "\n ========================="
59
+ + f"\n Distribution : { self .model .dist .name } "
60
+ + "\n Fitted by : MLE"
61
+ + f"\n Restoration Factor : { self .q } "
62
+ )
63
+
64
+ param_string = "\n " .join (
65
+ [
66
+ "{:>10}" .format (name ) + ": " + str (p )
67
+ for p , name in zip (
68
+ self .model .params , self .model .dist .param_names
69
+ )
70
+ ]
71
+ )
72
+
73
+ out = (
74
+ out
75
+ + "\n Parameters :\n "
76
+ + "{params}" .format (params = param_string )
77
+ )
78
+
79
+ return out
80
+
19
81
def initialize_simulation (self ):
20
82
self .us = uniform .rvs (size = 100_000 ).tolist ()
21
83
@@ -30,6 +92,23 @@ def get_uniform_random_number(self):
30
92
return self .us .pop ()
31
93
32
94
def count_terminated_simulation (self , events , items = 1 ):
95
+ """
96
+ Simulate count-terminated recurrence data based on the fitted model.
97
+
98
+ Parameters
99
+ ----------
100
+
101
+ events: int
102
+ Number of events to simulate.
103
+ items: int, optional
104
+ Number of items (or sequences) to simulate. Default is 1.
105
+
106
+ Returns
107
+ -------
108
+
109
+ NonParametricCounting
110
+ An NonParametricCounting model built from the simulated data.
111
+ """
33
112
life , * scale = self .model .params
34
113
q = self .q
35
114
self .initialize_simulation ()
@@ -61,6 +140,33 @@ def count_terminated_simulation(self, events, items=1):
61
140
return model
62
141
63
142
def time_terminated_simulation (self , T , items = 1 , tol = 1e-5 ):
143
+ """
144
+ Simulate time-terminated recurrence data based on the fitted model.
145
+
146
+ Parameters
147
+ ----------
148
+
149
+ T: float
150
+ Time termination value.
151
+ items: int, optional
152
+ Number of items (or sequences) to simulate. Default is 1.
153
+ tol: float, optional
154
+ Tolerance for interarrival times to stop an individual sequence.
155
+
156
+ Returns
157
+ -------
158
+
159
+ NonParametricCounting
160
+ An NonParametricCounting model built from the simulated data.
161
+
162
+ Warnings
163
+ --------
164
+
165
+ If any of the simulated sequences seem to not reach the time
166
+ termination value T due to possible asymptote, a warning message will
167
+ be printed to notify the user about potential convergence problems in
168
+ the simulation.
169
+ """
64
170
life , * scale = self .model .params
65
171
q = self .q
66
172
self .initialize_simulation ()
@@ -136,6 +242,50 @@ def negll_func(params):
136
242
137
243
@classmethod
138
244
def fit_from_recurrent_data (cls , data , dist = Weibull , init = None ):
245
+ """
246
+ Fit the generalized renewal model from recurrent data.
247
+
248
+ Parameters
249
+ ----------
250
+
251
+ data : RecurrentData
252
+ Data containing the recurrence details.
253
+ dist : Distribution, optional
254
+ A surpyval distribution object. Default is Weibull.
255
+ kijima : str, optional
256
+ Type of Kijima model to use, either "i" or "ii". Default is "i".
257
+ init : list, optional
258
+ Initial parameters for the optimization algorithm.
259
+
260
+ Returns
261
+ -------
262
+
263
+ GeneralizedOneRenewal
264
+ A fitted GeneralizedOneRenewal object.
265
+
266
+ Example
267
+ -------
268
+
269
+ >>> from surpyval import GeneralizedOneRenewal, handle_xicn
270
+ >>> import numpy as np
271
+ >>>
272
+ >>> x = np.array([1, 3, 6, 9, 10, 1.4, 3, 6.7, 8.9, 11, 1, 2])
273
+ >>> c = np.array([0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 , 1])
274
+ >>> i = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3])
275
+ >>>
276
+ >>> rec_data = handle_xicn(x, i, c)
277
+ >>>
278
+ >>> model = GeneralizedOneRenewal.fit_from_recurrent_data(rec_data)
279
+ >>> model
280
+ G1 Renewal SurPyval Model
281
+ =========================
282
+ Distribution : Weibull
283
+ Fitted by : MLE
284
+ Restoration Factor : 0.4270960618530103
285
+ Parameters :
286
+ alpha: 1.3494830373118245
287
+ beta: 2.7838386997223212
288
+ """
139
289
if init is None :
140
290
dist_params = dist .fit (
141
291
data .interarrival_times , data .c , data .n
@@ -183,8 +333,100 @@ def fit_from_recurrent_data(cls, data, dist=Weibull, init=None):
183
333
return out
184
334
185
335
@classmethod
186
- def fit (cls , x , i , c , n , dist = Weibull , init = None ):
187
- # Wrangle data
188
- # Rest of the data assumes values are in ascending order.
336
+ def fit (cls , x , i = None , c = None , n = None , dist = Weibull , init = None ):
337
+ """
338
+ Fit the generalized renewal model.
339
+
340
+ Parameters
341
+ ----------
342
+
343
+ x : array_like
344
+ An array of event times.
345
+ i : array_like, optional
346
+ An array of item indices.
347
+ c : array_like, optional
348
+ An array of censoring indicators.
349
+ n : array_like, optional
350
+ An array of counts.
351
+ dist : object, optional
352
+ A surpyval distribution object. Default is Weibull.
353
+ kijima : str, optional
354
+ Type of Kijima model to use, either "i" or "ii". Default is "i".
355
+ init : list, optional
356
+ Initial parameters for the optimization algorithm.
357
+
358
+ Returns
359
+ -------
360
+
361
+ GeneralizedOneRenewal
362
+ A fitted GeneralizedOneRenewal object.
363
+
364
+ Example
365
+ -------
366
+
367
+ >>> from surpyval import GeneralizedOneRenewal
368
+ >>> import numpy as np
369
+ >>>
370
+ >>> x = np.array([1, 3, 6, 9, 10, 1.4, 3, 6.7, 8.9, 11, 1, 2])
371
+ >>> c = np.array([0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 , 1])
372
+ >>> i = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3])
373
+ >>>
374
+ >>> model = GeneralizedOneRenewal.fit(x, i, c=c)
375
+ >>> model
376
+ G1 Renewal SurPyval Model
377
+ =========================
378
+ Distribution : Weibull
379
+ Fitted by : MLE
380
+ Restoration Factor : 0.4270960618530103
381
+ Parameters :
382
+ alpha: 1.3494830373118245
383
+ beta: 2.7838386997223212
384
+ """
189
385
data = handle_xicn (x , i , c , n , as_recurrent_data = True )
190
386
return cls .fit_from_recurrent_data (data , dist = dist , init = init )
387
+
388
+ @classmethod
389
+ def fit_from_parameters (cls , params , q , dist = Weibull ):
390
+ """
391
+ Fit the generalized renewal model from given parameters.
392
+
393
+ Parameters
394
+ ----------
395
+
396
+ params : list
397
+ A list of parameters for the survival analysis distribution.
398
+ q : float
399
+ Restoration factor used in the Kijima models.
400
+ kijima : str, optional
401
+ Type of Kijima model to use, either "i" or "ii". Default is "i".
402
+ dist : object, optional
403
+ A surpyval distribution object. Default is Weibull.
404
+
405
+ Returns
406
+ -------
407
+
408
+ GeneralizedOneRenewal
409
+ A fitted GeneralizedOneRenewal object.
410
+
411
+ Example
412
+ -------
413
+
414
+ >>> from surpyval import GeneralizedOneRenewal, Normal
415
+ >>>
416
+ >>> model = GeneralizedOneRenewal.fit_from_parameters(
417
+ [10, 2],
418
+ 0.2,
419
+ dist=Normal
420
+ )
421
+ >>> model
422
+ G1 Renewal SurPyval Model
423
+ =========================
424
+ Distribution : Normal
425
+ Fitted by : MLE
426
+ Restoration Factor : 0.2
427
+ Parameters :
428
+ mu: 10
429
+ sigma: 2
430
+ """
431
+ model = dist .from_params (params )
432
+ return cls (model , q )
0 commit comments