|
| 1 | +import numpy as np |
| 2 | + |
| 3 | +from surpyval import ( |
| 4 | + Beta, |
| 5 | + Gamma, |
| 6 | + Gumbel, |
| 7 | + GumbelLEV, |
| 8 | + Logistic, |
| 9 | + LogLogistic, |
| 10 | + LogNormal, |
| 11 | + Normal, |
| 12 | + Weibull, |
| 13 | +) |
| 14 | + |
| 15 | + |
| 16 | +def test_zi(): |
| 17 | + for dist in [Beta, Weibull, LogNormal, LogLogistic, Gamma]: |
| 18 | + for zeros in [1, 10, 100, 1000, 10000]: |
| 19 | + x = dist.random(100, 10, 2) |
| 20 | + x = np.concatenate((x, np.zeros(zeros))) |
| 21 | + model = dist.fit(x, zi=True) |
| 22 | + assert model.res.success |
| 23 | + |
| 24 | + |
| 25 | +def test_lfp(): |
| 26 | + for dist in [ |
| 27 | + Beta, |
| 28 | + Gamma, |
| 29 | + Gumbel, |
| 30 | + GumbelLEV, |
| 31 | + Logistic, |
| 32 | + LogLogistic, |
| 33 | + LogNormal, |
| 34 | + Normal, |
| 35 | + Weibull, |
| 36 | + ]: |
| 37 | + for censored in [1, 10, 100, 1000, 10000]: |
| 38 | + x = dist.random(100, 10, 2) |
| 39 | + c = np.concatenate((np.zeros_like(x), np.ones(censored))) |
| 40 | + x = np.concatenate((x, x.max() * np.ones(censored))) |
| 41 | + model = dist.fit(x, c=c, lfp=True) |
| 42 | + assert model.res.success |
| 43 | + |
| 44 | + |
| 45 | +def test_lfp_zi(): |
| 46 | + for dist in [Gamma, Weibull, LogNormal, LogLogistic]: |
| 47 | + for zi_lfp_values in [1, 10, 100]: |
| 48 | + for num_samples in [100, 1000, 10000]: |
| 49 | + x = dist.random(num_samples, 10, 2) |
| 50 | + c = np.concatenate( |
| 51 | + ( |
| 52 | + np.zeros_like(x), |
| 53 | + np.zeros(zi_lfp_values), |
| 54 | + np.ones(zi_lfp_values), |
| 55 | + ) |
| 56 | + ) |
| 57 | + x = np.concatenate( |
| 58 | + ( |
| 59 | + x, |
| 60 | + np.zeros(zi_lfp_values), |
| 61 | + x.max() * np.ones(zi_lfp_values) + 1, |
| 62 | + ) |
| 63 | + ) |
| 64 | + model = dist.fit(x, c=c, zi=True, lfp=True) |
| 65 | + if not model.res.success: |
| 66 | + raise ValueError(model, model.res) |
0 commit comments