-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy path__init__.py
135 lines (113 loc) · 3.87 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
from logging import getLogger
import os
import torch
from .embedders import LinearPointEmbedder
from .transformer import TransformerModel
from .sklearn_wrapper import SymbolicTransformerRegressor
from .model_wrapper import ModelWrapper
import torch.nn as nn
logger = getLogger()
def check_model_params(params):
"""
Check models parameters.
"""
# model dimensions
assert params.enc_emb_dim % params.n_enc_heads == 0
assert params.dec_emb_dim % params.n_dec_heads == 0
# reload a pretrained model
if params.reload_model != "":
print("Reloading model from ", params.reload_model)
assert os.path.isfile(params.reload_model)
class MLPRegressor(nn.Module):
def __init__(self, params):
super(MLPRegressor, self).__init__()
self.fc1 = nn.Linear(params.latent_dim, 128)
self.fc2 = nn.Linear(128 , 1)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
class MLPClassifier(nn.Module):
def __init__(self, params):
super(MLPClassifier, self).__init__()
self.fc1 = nn.Linear(params.latent_dim, 128)
self.fc2 = nn.Linear(128 , 1)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = torch.sigmoid(self.fc2(x))
return x
def build_modules(env, params):
"""
Build modules.
"""
modules = {}
modules["embedder"] = LinearPointEmbedder(params, env)
env.get_length_after_batching = modules["embedder"].get_length_after_batching
modules["encoder_y"] = TransformerModel(
params,
env.float_id2word,
is_encoder=True,
with_output=False,
use_prior_embeddings=True,
positional_embeddings=params.enc_positional_embeddings,
)
modules["encoder_f"] = TransformerModel(
params,
env.equation_id2word,
is_encoder=True,
with_output=False,
use_prior_embeddings=False,
positional_embeddings=params.enc_positional_embeddings,
)
modules["decoder"] = TransformerModel(
params,
env.equation_id2word,
is_encoder=False,
with_output=True,
use_prior_embeddings=False,
positional_embeddings=params.dec_positional_embeddings,
)
modules["regressor"] = MLPRegressor(
params,
)
modules["classifier"] = MLPClassifier(
params,
)
# reload pretrained modules
if params.reload_model != "":
logger.info(f"Reloading modules from {params.reload_model} ...")
reloaded = torch.load(params.reload_model)
modules_to_load = ['embedder', 'encoder_y','encoder_f'] #SNIP modules
if params.is_proppred:
modules_to_load = ['encoder_f'] #symbolic encoder (encoder_f) for numeric properties
modules_to_load = ['encoder_y'] #numeric encoder (encoder_y) for symbolic properties
# for k, v in modules.items():
# assert k in reloaded
for k in modules_to_load:
assert k in reloaded
v = modules[k]
if all([k2.startswith("module.") for k2 in reloaded[k].keys()]):
reloaded[k] = {
k2[len("module.") :]: v2 for k2, v2 in reloaded[k].items()
}
v.load_state_dict(reloaded[k])
# log
for k, v in modules.items():
logger.debug(f"{v}: {v}")
for k, v in modules.items():
logger.info(
f"Number of parameters ({k}): {sum([p.numel() for p in v.parameters() if p.requires_grad])}"
)
# cuda
if not params.cpu:
for v in modules.values():
v.cuda()
return modules