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A B S T R A C T

Although machine learning holds an enormous promise for autonomous space robots, it is currently not employed
because of the inherent uncertain outcome of learning processes. In this article we investigate a learning
mechanism, Self-Supervised Learning (SSL), which is very reliable and hence an important candidate for real-
world deployment even on safety-critical systems such as space robots. To demonstrate this reliability, we
introduce a novel SSL setup that allows a stereo vision equipped robot to cope with the failure of one of its
cameras. The setup learns to estimate average depth using a monocular image, by using the stereo vision depths
from the past as trusted ground truth. We present preliminary results from an experiment on the International
Space Station (ISS) performed with the MIT/NASA SPHERES VERTIGO satellite. The presented experiments were
performed on October 8th, 2015 on board the ISS. The main goals were (1) data gathering, and (2) navigation
based on stereo vision. First the astronaut Kimiya Yui moved the satellite around the Japanese Experiment Module
to gather stereo vision data for learning. Subsequently, the satellite freely explored the space in the module based
on its (trusted) stereo vision system and a pre-programmed exploration behavior, while simultaneously per-
forming the self-supervised learning of monocular depth estimation on board. The two main goals were suc-
cessfully achieved, representing the first online learning robotic experiments in space. These results lay the
groundwork for a follow-up experiment in which the satellite will use the learned single-camera depth estimation
for autonomous exploration in the ISS, and are an advancement towards future space robots that continuously
improve their navigation capabilities over time, even in harsh and completely unknown space environments.
1. Introduction

Future space missions will increasingly rely on the help of robotic
systems and in some cases even be performed purely by fully autonomous
robots. Currently, space robots are either tele-operated remotely [1–3] or
perform autonomous tasks such as driving short stretches in a pre-
programmed manner [4–7]. An illustrative example of this is the Curi-
osity Mars rover, which uses its HazCams and computer vision algorithms
to do autonomous traversing. However, its navigational goal is set
manually by a human operator and the traversal algorithms are fixed or
pre-programmed [8]. Current space robots do not have the ability to
learn from their environment.

Learning can be very advantageous, since it decreases pre-
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deployment engineering effort and allows the robot to adapt to specific
properties of its potentially unknown environment. This last advantage is
especially relevant for planetary explorers that are by definition sent to
areas of which little is known. Despite these advantages, machine
learning is not yet used in space robotics. There have been proposals to
use learning for instance for visual pose recognition of known satellites
[9,10], but this learning would take place before deployment and would
not allow the involved robot to learn from unforeseen circumstances. A
major reason that space robots are not equipped with algorithms to learn
in their unknown space environment is that it introduces extra risk for
missions with extremely small margins for error.

A potential suitable candidate for learning on space robots is Self-
Supervised Learning (SSL), since it is a reliable learning method that
H.E. de Croon).
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Acronyms/abbreviations

SSL Self-Supervised Learning
JEM Japanese Experimentation Module
SPHERES Synchronized Position Hold Engage and Reorient

Experimental Satellite
VERTIGO Visual Estimation for Relative Tracking and Inspection

of Generic Objects
ISS International Space Station
ROC curve Receiver Operating Characteristic curve
TPR/FPR True Positive Rate/False Positive Rate

Fig. 1. The Texton library used in the experiments. The right set of Textons are based on
pixel intensities, the left set contains (artificially colored) gradient Textons (i.e. Textons
based on gradient images).

Fig. 2. SPHERES VERTIGO details.
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allows robots to adapt to their environment. In an SSL setup, a robot
extends its capabilities by using a trusted, primary sensor cue to train a
still unknown secondary sensor cue. The most well-known example of
SSL is its use on autonomous driving cars such as Stanley [11–15] for the
recognition of drivable terrain. Stanley used a laser scanner to detect
drivable terrain close by. It then used the outputs from the laser scanner
as classification targets for a supervised learning process. This process
learned a function that maps colors in the camera image to the classes of
“drivable” and “non-drivable”. Since the camera has a much longer range
than the laser scanner, Stanley could see where the road was going for
much further distances, allowing it to move more quickly and win the
grand DARPA challenge. However, SSL can be more broadly applied to
other modalities and for other purposes [16–18].

We recently introduced a novel SSL setup that allows a robot equip-
ped with stereo vision to cope with a potential failure of one of its
cameras [19]. The idea is that the robot learns how to see distances in a
single, still image while operating in its environment. To this end, it will
learn a function that maps textures in an image to the distances obtained
with its stereo vision system. Our proposed setup will require the robot to
learn a model that persists over time when the primary cue fails, which is
why we term it persistent SSL. We have previously successfully tested
persistent SSL for the navigation of autonomous drones on Earth [19],
which showed its potential in terms of reliability for application in space.

In this article, we will present preliminary results from an experiment
on the International Space Station (ISS) performed with the MIT/NASA
SPHERES VERTIGO satellite, which is equipped with a stereo vision
system that allows it to perceive depth and navigate by itself. The pre-
sented preliminary experiments, prepared by a mixed team from TU
Delft, the European Space Agency (ESA) and the Massachusetts Institute
of Technology (MIT), were performed on October 8th, 2015 on board the
ISS. The main goals were (1) data gathering, and (2) navigation based on
stereo vision. Going beyond the goals of the experiments, the SPHERES
VERTIGO satellite also performed the learning during operation, making
it – to the best of the authors' knowledge – the first learning robot in
space. Please remark that this paper is an extension of [20], where we
now elaborate on the methods and algorithms, and show the results of
the preparatory glass-table experiments.

The remainder of the article is structured as follows. In Section 2 we
explain the materials and methods used in the experiment. Subsequently,
in Section 3 we present the experimental results, which are discussed in
Section 4. Finally, we draw conclusions in Section 5.

We have made an explainer video about the experiment in Ref. [21].

2. Algorithms

In recent work, we proposed a persistent Self Supervised Learning
(SSL) method [19]. Persistent SSL is able to use on board available
training data to train another algorithm online, whichmay use a different
sensor. Since ground truth is available during most of the run-time,
performance guarantees can be made on the outcome of the learned es-
timate. Moreover, the learning algorithm is trained in exactly the same
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environment as the deployment environment, while providing large
amounts of training data (since the labelling is done automatically by a
trusted algorithm based on a trusted sensor cue available on the drone).
Advantages of the learned cue include possible extrapolation to results
better than the trusted cue (since the cue on which the learned algorithm
was trained may be better in some situations), while possibly being less
CPU intensive, and most importantly for this work, providing another
adaptive and redundant cue to become more resistant against sensor
failure etc. In this paper, we again use the persistent-SSL method to solve
the proof of concept problem of learning monocular distance estimation
on board a robot.

The general idea behind the monocular depth estimation method in
our application is that the distribution of textures in an image varies
when the camera gets closer to obstacles. To capture this phenomenon
we employed a Texton based Visual Bag of Words (VBoW) method fitted
with a kNN (k¼ 5) regressor to do the monocular distance estimation (as
in our work in Ref. [19]). Although more complex methods are available
that could lead to a better performance (e.g., deep neural networks [22]),
the computational resources on the SPHERES are very restricted, as is
common for space systems (e.g., [23]). To make the learning as efficient
as possible, the learning happened in batches of 1 min.

In VBoW a fixed number of image features are treated as words, in our
case textons are words. A texton is a filter of size w � h pixels, which is
convoluted with the input space. A total of m patches are extracted from
each input image of size (?? � ??), and each of the m patches is convo-
luted with each of the n textons. For each image, a texton occurrence
histogram of size n is calculated using a Euclidean distance metric. The
closest texton for each patch is found using this distance and the corre-
sponding bin is incremented by one. To increase computational effi-
ciency, we apply a grid wise subsampling such that ??≪(?? � ??). This
may introduce some sampling noise, which in turn is partly countered by
smoothing the estimator output. We also optimized using SIMD processor
instructions for the Euclidian distance calculations.

Compiling the Texton library (Fig. 1) was done with Kohonen clus-
tering of textures using a data set gathered from an office cubicle envi-
ronment, as proper ISS data was not available beforehand. Two types of
textons are used: normal textons calculated from (offline) Kohonen
clustered textures and gradient textons obtained similarly but based upon
the gradient of the images. Gradient textures have been shown in



Fig. 3. The orange SPHERES satellite with VERTIGO in the JEM of the ISS. The JEM has
two open ends (one is visible here, the other is behind the camera) and 6 walls enclosing
the SPHERES test volume of approximate dimensions: x: 1.5 m, y: 1.8 m, z: 1.5 m. In the
lower left corner the astronaut laptop is visible, showing the graph of Fig. 12 to the
astronaut. Coincidentally one can see another SPHERES satellite (a little bit right to the
laptop) floating in the test volume, which could be an obstacle the orange satellite needed
to avoid. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Ref. [24] to be an important depth cue.
The stereovision algorithm used comes from LibElas [25] as this is

the standard algorithm used with VERTIGO. The disparity map
generated by this library was averaged to an average disparity scalar
(disparity ~ 1/distance). Fig. 4 shows how these algorithms are con-
nected using persistent SSL. Stereo camera images are passed into the
stereo processor, the average disparity is used as ground truth to train the
monocular average disparity estimator, which receives only one of the
images from the stereo pair as its input. The error rate of the monocular
estimator is determined by means of a Receiver Operator Characteristic
(ROC) curve analysis. To do so, both the trusted stereo disparity and the
regression output of the monocular disparity estimator are binary clas-
sified to obstacle/no obstacle signals. An input image is classified as
containing an obstacle when the average disparity becomes higher than a
threshold. In practice a wall is approached straight up to about 0.3 m
distance before being classified as an obstacle. Smaller obstacles may be
approached closer because the averaging of the disparity map filters out
Fig. 4. System
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smaller objects. We use disparity instead of depth to compensate for this
effect; disparity counts close by pixels relatively heavy towards the total.
The obstacle threshold on the stereo average disparity ground truth is
tuned by hand once so that collisions are avoided always. By varying the
threshold on the monocular estimator, a ROC curve is created.

Using the ROC curve to determine the optimal threshold level on the
monocular estimator, and subsequently the resulting optimal True Posi-
tive Rate (TPR, rate of correctly classified obstacle image) versus the
False Positive Rate (FPR, rate of no-obstacle images that were classified
as obstacle images), the quality of the learned estimator is evaluated. An
additional threshold on this TPR/FPR ratio is applied to determine
whether the monocular estimator is ready for use by the behavior rou-
tines, i.e. whether SSL succeeded to learn enough so that the monocular
estimator output can be trusted.

The behavior routines are kept as simple as possible: 1) move into a
straight line forward (in the direction of the camera) until an obstacle is
detected (e.g. one of the ISS walls), 2) stop and rotate into another
random direction, 3) accelerate towards that direction in a straight line
again and repeat. This results in an autonomous exploration behavior
that was also shown in Ref. [19].

3. Experiments setup

To perform the experiment we utilized the SPHERES test bed system,
which was launched to the ISS in 2006. This system is meant as a test bed
platform, to give engineers a chance to test algorithms on real spacecraft
in a microgravity environment before deploying them on multi-million
dollar satellites. A stereo vision upgrade (VERTIGO) was installed in
2013 [26,27]. Fig. 2 shows a satellite of the SPHERES platform with the
VERTIGO upgrade. A SPHERES satellite contains 12 CO2 thrusters to
provide full 6-DOF control in the micro gravity environment of the ISS.
The VERTIGO system consists out of a monochrome 640� 480 resolution
stereo camera, and a 1.2 GHz VIA �86 embedded computer running
Ubuntu. Using this platform, we tested our persistent-supervised learning
method first in the 3-DOF SPHERES preparation facility of the Space
Systems Lab at MIT and subsequently on board the ISS, inside the Jap-
anese Experiment Module (JEM).
overview.



Fig. 5. Glass table test. The SPHERES satellite can move freely over the table enclosed by
the two ‘walls’ and the two open ends. The glass table has x,y dimensions of [1.5, 2.0] m.

Table 1
Glass Table test results overview.

Test Duration Imagesa Distance Notes

Manual 128 s 1281/370 5.3 m Success
Auto 606 s 3642/2057 20.9 m Success

a Acquired/processed and learned on-board.

Fig. 6. Test set results of the manual glass table test.
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3.1. ISS experiments

We have conducted two experiments on the ISS. The first experiment
was a short manual experiment (2 min). As the autonomous behavior and
specifically tuned control algorithms had not been previously tested in
the ISS, the first experiment mainly served as a contingency and data
collection experiment. Therefore, more emphasis was placed on
acquiring data at the cost of processing them. The frame rate of acquired
images was set to 10 fps, while the algorithms executed at about 2.5 fps
during the tests on the ISS. The satellite was manually moved through the
JEM volume by the astronaut in a way that simulated the autonomous
behavior as closely as possible, keeping the untested 6-DOF control parts
out of the loop. The astronaut was provided haptic feedback to move the
satellite differently by means of short bursts of the thrusters. If the
thrusters fired, the astronaut moved too quickly. This was calculated by
evaluating the mean square error between the learned estimate and the
trusted average disparity. A manual and quick briefing before the test
was given to the astronaut on how to move the satellite.

The second, autonomous, test was set to take 10 min. The satellite
4

starts by using its stereo vision to explore the SPHERES-volume inside the
JEM, by moving in a straight line until an obstacle (JEMwall) is detected.
After detection, the satellite rotates in a random direction, checks if there
is no obstacle in that direction, and then proceeds in another straight line
towards that direction. In the meantime, persistent-SSL is training the
estimation of a single (average) depth based on the stereo vision depth
information and the monocular image data from one of the cameras of
the stereo vision system. After 7 min, or earlier if the algorithm achieved
a low error rate on its learned results, the monocular vision was set to be
enabled in the behavior loop.

Since the SPHERES test volume consists of two open ends, the stereo
vision will not detect an obstacle in those regions, but the satellite is not
allowed to venture out of these regions. In those cases, the SPHERES
Global Metrology (sonar based pseudo-GPS) is used to determine if the
satellite is within the volume. In case the satellite is leaving the volume,
the satellite stops, rotates randomly to a direction inwards to the volume,
and starts a straight line towards that new direction. A safety override
control maneuver is activated when the satellite moves close to the outer
ranges of the expected range of the global metrology system, in which
case attitude control of the satellite is disabled and full thruster power is
used for position control to return to the test volume. The global
metrology system is also used to log the exact position of the satellite for
later analysis. The SPHERES test volume in which the global metrology
system is working has the following approximate dimensions: x: 1.5 m, y:
1.8 m, z: 1.5 m. Fig. 3 shows the orange satellite during one of the ex-
periments in the ISS through the overhead camera. During the autono-
mous tests, emphasis was placed on results at the cost of sole data
gathering. Images were captured at 6 fps instead of 10 fps during the
manual test. The algorithms executed at about 4.7 fps, meaning about 1.3
fps were not used during operation itself.

3.2. Preliminary experiments

Before the ISS experiment, tests here on earth were conducted to test
both the learning algorithm, control, and the resulting behavior on the
same hardware as in the ISS. At the Space Systems Laboratory in MIT,
copies of the SPHERES are available to perform such tests. The satellites
are mounted on an air-cushion undercarriage, that can float freely on a
glass table. This means the satellite can move in 3-DOF using its normal
CO2 thrusters, as can be seen in Fig. 5. Movement in the Z direction, and
rotations around the X, Y axes are not possible. We present an experiment
on the glass table with exactly the same algorithms as the tests that were
to be run in the ISS. The main goal is to demonstrate the viability of the
persistent SSL method on the SPHERES system. To make the experiments
as comparable as possible with the ISS experiments, first the satellite is
manually moved over the table for 2 min. Then, a follow up autonomous
experiment runs the satellite for 10min through the confined space of the
glass table. Somewhat similar to the ISS, the glass table was surrounded
with two (artificially textured) walls and two open ends. The glass table is
equipped with the same Global Metrology system that is placed in the
ISS, and the same override algorithm is used (and tested) on the open end
of the table. The Global Metrology system covers the whole glass table,
which means the satellite cannot accidentally leave the covered volume
like in the ISS. This means that safety override control maneuver, in
which attitude control is disabled in favor of the position control, could
not be tested on the glass table. The vision algorithms cope with the
walled parts of the glass table. The random rotation selected after
detecting the walls are restricted to the 3-DOF space of the glass table.

4. Glass table results

Several engineering tests on the glass table were conducted, of which
one is selected for presentation in this section. The full test can be viewed
online in the video playlist at [28]. Both the rendered results as well as
the video of an external camera can be seen. A summary of the data
acquired as well as the distance travelled during these tests is presented



Fig. 7. Trajectory of the autonomous glass table test.

Fig. 8. Test set results of the autonomous glass table test.

Table 2
ISS test results overview.

Test Duration Distance Imagesa Notes

T4.1 ~50 s 2.2 m 596/144 IR overload reset
T4.2 120 s 6.5 m 1131/267 Success
T5.1 ~30 s 0.5 m 261/123 Battery empty
T5.2 210 s 8.1 m 1293/605 IR overload reset

a Acquired/processed and learned on-board.
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in Table 1.

4.1. Manual test

The incrementally learned results of the manual test are visualized in
Fig. 6. As expected for the initially untrained algorithm, the estimated
monocular depth shows a large difference compared to the stereo depth
ground truth, however in the video some visual correlation is appearing
rapidly while the experiment progresses. After the 2-min test, the optimal
TPR/FPR ratio is 0.99/0.23 on the training dataset.

An exact plot of the trajectory cannot be given, as the manual oper-
ation of the satellite disturbed the global metrology system at the
glass table.

4.2. Autonomous test

A trajectory of the autonomous test is plotted in Fig. 7. The TPR/FPR
ratio determined above based on the training data from the manual test is
below the manually tuned threshold of 0.95/0.1. This means the algo-
rithm decides to start its explorative behavior based on its trusted stereo
ground truth depth. However, at 0:34 in the video (62 s in real time), the
TPR/FPR ratio tips over the threshold, which results in the satellite using
its learned monocular depth estimator as its primary cue. If at any point
the TPR/FPR ratio drops below the threshold again, e.g. due to increased
uncertainty because of entering a yet unknown area, the algorithm
switches back to stereo. In this case however, the error stays low enough
for the remainder of the experiment to justify continuous exploration
based on the learned monocular depth cue. As can be seen from the
trajectory, the 2D space is explored randomly, as intended, to fully test
the algorithms.

The incrementally learned results are shown in Fig. 8. In the begin-
ning the algorithm is trained on a relatively small training set, which is
why the correlation between the estimate and the ground truth is low.
However, as time proceeds and the algorithm is trained on more data, the
correlation visually increases as the regression error goes down. More
importantly, TPR/FPR ratio on the training set drop down to 0.96/0.07 in
the final moments. This result builds confidence that the test on the ISS
may work well, although the data is applicable only to a point due to the
restricted 3-DOF space.

5. ISS results

SPHERES Test Session 74B was conducted on October 8th, 2015, with
astronaut Kimiya. The test session contained six tests; this paper de-
scribes the results of test four and test five in particular. The other tests
were unrelated experiments from other scientists. Both tests four and five
were done twice due to hardware failures. A summary of the results of
these tests is given in Table 2. Videos of each test and their raw data can
be viewed online in Ref. [29].

5.1. Manual tests #1 (T4.1 & T4.2)

The objective of the manual test, was for the astronaut to move the
SPHERES satellite through the volume, in order to obtain images of the
surroundings. Kimiya picked up the instructions well and attempted to
execute some useful trajectories. However, after 50 s, a satellite reset
occurred. Offline analysis shows the reason for the reset as a disturbance
on the global metrology infrared detector on the satellite, which caused a
high priority interrupt to continuously fire, which caused a system reset
by means of a watchdog.

The 3D path of T4.1, as undertaken by Kimiya before the reset, is
depicted in Fig. 9.

In the time before the unexpected reset, 596 stereo images have been
acquired of which 144 were directly used for training.

Due to the reset in T4.1, a second run of T4 was attempted and suc-
cessfully finished. The learned data from T4.1 was automatically



Fig. 9. Satellite flight path of T4.1.

Fig. 10. Satellite flight path of T4.2.

Fig. 11. Test set results of T4.2.
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concatenated to T4.2. During T4.2 an additional 1131images were ac-
quired, of which 267 were directly used for online training. A 3D plot of
the trajectory of the satellite is shown in Fig. 10.

The stereo images acquired during T4 were analyzed in real-time and
as ground truth the average disparity for each stereo pair was calculated.
The results of this can be seen in Fig. 11. The estimated disparity is based
on the self-supervised learned algorithm trained on the 144 images from
T4.1 during T4.2. As can be seen, some correlation is visible, but the
training set was too small to properly estimate the disparity at this point.
The final optimal TPR/FPR was 1/0.33 on training data, unsurprisingly
below the threshold to already use the monocular estimator as the pri-
mary cue.
5.2. Autonomous tests (T5.1 & T5.2)

The autonomous test was also attempted twice. The first time, T5.1, a
6

battery empty failure occurred, which caused the VERTIGO system to
automatically shut down after 30 s, and loss of control happened after
11 s. The 3D path is depicted in Fig. 13. During its first and only tra-
jectory, the satellite managed to evade another stationary satellite (that
was placed there mistakenly) using its trusted stereo algorithm. This
evasion maneuver is shown as the first green circle in the plot. The
subsequent vision turns were commanded by the algorithm, but not
executed due to the battery problem. During T5.1 an additional 261
images were acquired, of which 123 were analyzed directly for training.

As T5.1 failed due to power loss, another attempt was done. Unfor-
tunately, the second attempt failed after 210s. Offline analysis showed
the cause to again be the IR disturbance problem that also ended T4.1.
Before that time, the satellite could make several crossings through the
volume exploring and learning simultaneously. Also, another 1293 im-
ages were acquired of which 605 analyzed during the test. The 3D flight
path of T5.2 is depicted in Fig. 14 and Fig. 15.

The first turn was initiated by the global metrology based safety
override, as the satellite ventured out of the open end of the volume. The
safety override has therefore been proven to work as expected. The
second and third turn were both stereo vision avoidance commands,
avoiding collision with the JEM wall. The fourth turn was caused by the
safety override, but happened at too high a speed. This caused satellite to
drift too far out of the allowed volume causing the emergency safety
override to become active. The satellite diverted all control power to
position control, disabling attitude control, in order to move back into
the volume as quickly as possible. In a best-case scenario, this would not
have been necessary. For future missions we plan to reduce the top speed
of the satellite such that this will not happen again. The last two turns are
caused by stereo avoidance commands, again attempting to avoid the
JEM wall. However, before the satellite had a chance to execute the
avoidance maneuver, the IR reset failure interfered.

Other, previous experiments on the SPHERES VERTIGO were much
less affected than ours by the IR reset failure. The current hypothesis is
that it has to do with the more complete exploration as performed by the
autonomous stereo vision based behavior. This brings the satellite closer
to interfering electronics in the module. Various solutions are under
evaluation to prevent the problem in future experiments.

A video of the results calculated on the satellite during the experiment
in the ISS can be viewed online in [30]. A still image from this video can
be seen in Fig. 12, this video was also visible for Kimiya during the tests
by means of a Wi-Fi stream. The image contains the raw input images
from the left camera (top left in the figure) and right camera (top, mid-
dle), the disparity map (top right – red is close, blue is far), and a graph of
the average disparity over time (bottom time line plot). The average
disparity from the trusted stereo vision algorithm is shown in blue, the



Fig. 12. Results from T5.2 overview. This is a still taken from the video stream shown to the astronaut.

Fig. 13. Satellite flight path of T5.1.

Fig. 14. Satellite flight path of T5.2 with vision results.
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learned estimates are shown in green, while predictions of the robot of
previously unseen cases are shown in red. When the trusted disparity
supersedes the threshold, an avoidance maneuver is commanded.

The learned results can be seen in Fig. 16. We zoom in on two mo-
ments in time during the learning on board the satellite. Fig. 17 and 18
show the learned disparities (green) and predicted disparities (red) just
before t ¼ 141 s and after t ¼ 141 s. The predictions before t ¼ 141 s do
not seem to correlate much with the “ground-truth” stereo vision esti-
mates. However, after learning on these samples, the predictions on new,
unseen samples do correlate well with the ground-truth. The predictions
can be evaluated objectively with respect to the stereo vision threshold –

resulting in a classification problem setting. Before learning at t ¼ 141 s,
the True Positive Rate (TPR) of the predictions is 0.2 while the False
Positive Rate (FPR) is 0.6. After learning that part, the predictions are
indeed objectively better, with a TPR of 0.7 and FPR of 0.3. These results
correspond to results obtained on the glass table with fewer degrees of
freedom. They show that the learning is successful, but that the amount
of gathered data is not yet enough to cover the entire environment.
7

6. Conclusions

We have presented preliminary results from a Self-Supervised
Learning (SSL) experiment on the International Space Station (ISS) per-
formed with the MIT/NASA SPHERES VERTIGO satellite. The main goals
of the experiment were (1) data gathering, and (2) navigation based on
stereo vision. Both goals were successfully achieved, although the ex-
periments were hampered by automatic resets triggered by an interfer-
ence of the IR detector of the SPHERES satellite. During both parts of the
experiment, the satellite was learning online to map the appearance of
the environment to the distance estimates from its stereo vision system.
Despite the extremely limited training time, some successful general-
ization of the learned mapping to unseen images can be observed.

These first robotic learning experiments in space hold a promise for
follow-up experiments in which the satellite will use the learnedmapping
to navigate with only a single camera and further proving the reliability
of SSL. For a follow-up experiment, the following main insight from the



Fig. 15. Satellite flight path of T5.2 with orientation.

Fig. 16. Test set results of T5.2.

Fig. 18. Estimated disparity at t ¼ 212s, after learning the particular scene up to t ¼ 141s.
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current experiment should be considered. The combination of a limited
experiment time with a relatively slow speed of the robot satellite implies
that it will be difficult to learn the entire available space in the module.
Fig. 17. Estimated disparity before learning the particular scene at t ¼ 141 s.

8

This is especially true given the fact that the robot in space canmove with
6 DOF, leading to a high variety in environment appearance. Given a
limited experiment time, the movement space of the satellite should also
be more limited, e.g., by not having it travel to the open ends of the
module. As a by-effect, this will avoid the problems we experienced when
our emergency override system disabled attitude control to enter back
into the central space. This will hopefully allow learning and switching to
monocular vision control in a single test session.
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