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A Kripke Model for Simplicial Sets

Marc Bezem∗ Thierry Coquand†

Abstract

By means of a countermodel we show that the homotopy equivalence of the fibers of a Kan
fibration over a connected base cannot be proved constructively.

1 Introduction

It is generally assumed that Kan fibrations in the category of simplicial sets are inherently ‘non-
constructive’ since important properties of Kan fibrations have only been proved using classical logic.
This has important consequences in that Voevodsky’s model construction for type theory with the Uni-
valence Axiom [1] cannot be internalized in type theory, thus blocking one solution of the fundamental
problem of the computational interpretation of univalence. Another consequence has been that model
constructions based on semi-simplicial sets have been considered, for example, in [2], but these come
with a separate set of challenges. However, not knowing how to prove something constructively leaves
open the possible existence of a constructive proof. In this note we show that a constructive proof of one
of the basic properties of Kan fibrations cannot exist. We consider this formal unprovability result as a
necessary first step towards a constructive reformulation of Kan simplicial set theory.

2 Preliminaries

We assume familiarity with the notions (opposite) category, functor and natural transformation, which
can be found in, for example, [4]. The category ∆ consists of objects [n] = {0, . . . , n} for every n ∈ N,
equipped with the standard ordering, and order-preserving maps. A simplicial set is a functor from ∆op

to Set.
The simplicial set ∆k, the standard k-simplex, is defined by ∆k[n] = [n] → [k] with u 7−→ u ◦

f, ∆k[n] → ∆k[m], for all order-preserving f : [m] → [n]. The simplicial set Λk
j , the j-th horn of the

standard k-simplex, is defined by Λk
j [n] = {f ∈ ∆k[n] | [k] − {j} 6⊆ Im(f)}. The simplices of Λk

j are
obviously closed under precomposition with any order-preserving map [m] → [n]. See [5, 6] for more
information, in particular on the simplicial identities and the decomposition of order-preserving maps in
face maps di : [n]→ [n+1] (order-preserving injections skipping i) and degeneracy maps sj : [n+1]→ [n]
(order-preserving surjections repeating j).

Simplicial sets with natural transformations as maps form a category. The following maps of simplicial
sets are used in the sequel, and may serve as (trivial) examples: the embedding e : Λk

j → ∆k; the constant

map ci : X → ∆k with ci[n](x) : [n]→ [k] : m 7−→ i, for all x ∈ X[n] (0 ≤ i ≤ k).
A Kan fibration is a map p : X → Y of simplicial sets that satisfies a particular extension condition.

We briefly summarize the definition and refer for more explanation to [5, Definition 7.1] or [6, I.3]. The
map p is Kan if for every horn Λk

j and all maps f : Λk
j → X and g : ∆k → Y such that p ◦ f = g ◦ e,

there exists a map h : ∆k → X such that f = h ◦ e and g = p ◦ h.
The phenomenon we study, the undecidability of degeneracy, has already important consequences in

dimension 1. This makes it possible to restrict attention to dimensions 0 and 1, where simplicial sets have
a multigraph structure. Doing so simplifies the presentation and actually gives a stronger counterexample.
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Also, it suffices to work with Kan fibrations with two fibers. The following two definitions specify the
graph structures, and Definition 2.3 the corresponding simplicial sets and Kan fibrations.

Definition 2.1 A reflexive multigraph consists of C1, C0, d0, d1, s where C0 is a set of points, C1 a set
of edges, di : C1 → C0, d1 the source and d0 the target function, and s : C0 → C1 the function mapping
each c to a selfloop of c. We write e : a → b if e is in C1 such that d1(e) = a and d0(e) = b (note the
direction!). In particular we have di(s(c)) = c for all c ∈ C0. A Kan graph is a reflexive multigraph
having the following explicit filling operation fill2: for all a, b, c in C0 and e : a → b and f : a → c we
have such that fill2(e, f) : b→ c in C1.

As a consequence of the above definition, fill2(e, s(a)) : b → a for all e : a → b, so a Kan graph is
symmetric. If we also have f : b → c, then fill2(fill2(e, s(a)), f) : a → c, so a Kan graph is transitive.
Kan graphs are precisely the reflexive, symmetric and transitive multigraphs with explicit operations.

The use of explicit operations, here and below, avoids unnecessary appeals to the Axiom of Choice.
More importantly, it pre-empts the objection that the counterexample can be given because the input
data lacks essential information.

Definition 2.2 A Kan ∆1-graph is defined by the following data (intuitive explanation below):

1. Two Kan graphs A0, A1 and B0, B1 with their respective maps di, s and fill2.

2. A set G and two maps d1 : G → A0 and d0 : G → B0. Again we write e : a → b if e is in G such
that d1(e) = a and d0(e) = b (no confusion will arise from using the same notation).

3. The following filling operations: for all a ∈ A0 we have fill1(a) : a→ b in G, with b = d0(fill1(a)) ∈
B0; for all b ∈ B0 we have fill1(b) : a→ b in G, with a = d1(fill1(b)) ∈ A0.

4. The following filling operations: for all a ∈ A0, b ∈ B0, c ∈ A0 + B0 and e : a → b in G and
f : a→ c in A1 +G, there exists fill2(a, f, e) : c→ b in G+B1; for all a ∈ A0, b ∈ B0, c ∈ A0 +B0

and e : a→ b in G and f : c→ b in G + B1, there exists fill2(e, f, b) : a→ c in A1 + G.

In fact, the Kan graph property of A and B can be derived from the last three clauses above. The
intuition behind the definition of Kan ∆1-graph is: A represents the fiber over 0, B the fiber over 1, and
G represents the liftings of (0→1) = id[1] ∈ ∆1[1] to the fibers A and B. (The direction of the edges in
G is consistent with 0→1.) Note that the subscripts in A0, A1 and B0, B1 refer to the dimension.

In the following definition we construct the canonical simplicial set and the canonical Kan fibration
implicit in the data of Definition 2.2, validating the intuition.

Definition 2.3 Let data be as in Definition 2.2. Define the simplicial set E by E[0] = A0 + B0,
E[1] = A1 +G+B1 and E[n], for n ≥ 2, consisting of all objects of the form (u0, ..., un; . . . , eij , . . .) such
that there exists a l with 0 ≤ l ≤ n + 1 and

eij : ui → uj in A for all 0 ≤ i < j ≤ l − 1,
eij : ui → uj in B for all l ≤ i < j ≤ n,
eij : ui → uj in G for all 0 ≤ i ≤ l − 1, l ≤ j ≤ n (so ui ∈ A0, uj ∈ B0).

The maps dk in E are defined by removing from (u0, ..., un; . . . , eij , . . .) the point uk and all edges eik and
ekj . The maps sk in E are defined by duplicating the point uk in (u0, ..., un; . . . , eij , . . .), adding an edge
ek(k+1) = s(uk), and duplicating edges and incrementing indices of edges as appropriate. This completes
the construction of the simplicial set E. The fibration p : E → ∆1 such that A and B represent its fibers
is simply p(u0, ..., un; . . . , eij , . . .) : [n] → [1] : i 7−→ (0 if ui ∈ A, 1 if ui ∈ B). The fact that p is Kan
can be seen as follows. Let Λn

k (n ≥ 1) be a horn and f : Λn
k → E (0 ≤ k ≤ n). Let e : Λn

k → ∆n be
the embedding and g : ∆n → ∆1 such that p ◦ f = g ◦ e. We have to define a lifting h : ∆n → E. If
n = 1 we use fill1 of clause 3 in Definition 2.2. If n = 2 we observe that the horn contains all points and
we use fill2 of clause 4 in Definition 2.2. If n ≥ 3 we observe that the horn contains all points and all
edges and we define the lifting by q 7−→ (f[0](q(0)), . . . , f[0](q(m)); . . . , f[1](eij), . . .). Here q : [m] → [n]
is order-preserving and eij is the edge from q(i) to q(j) in ∆n[1] = Λn

k [1], in so far required by E.
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Remark 2.4 There is actually a simpler way to extend the data in Definition 2.2 to a simplicial set,
namely by adding only degeneracies in higher dimensions. More precisely, define the simplicial set E′

by E′[0] = A0 + B0, E′[1] = A1 + G + B1 and E′[n], for n ≥ 2, consisting of all objects of the form
(u0, ..., un; . . . , ei(i+1), . . .) such that there exists a l with 0 ≤ l ≤ n + 1 and ui ∈ A for all 0 ≤ i < l,
ui ∈ B for all l ≤ i ≤ n, and all but at most one ei(i+1) degenerated (0 ≤ i < n). The corresponding
fibration p′ is then in general not Kan, and therefore we cannot use this.

Now that we have explained the relation between the ∆1-graph A,G,B and its Kan fibration p :
E → ∆1, we can formulate the homotopy equivalence of the fibers of p in terms of A,G,B. Recall that a
homotopy equivalence between simplicial sets X and Y consists of maps f : X → Y and g : Y → X such
that g ◦ f is homotopic to idX and f ◦ g is homotopic to idY . For maps h0, h1 : Z → Z, homotopy means
that there exists a h : Z×∆1 → Z such that hi = h◦(idZ , ci), with ci the constant map Z → ∆1 (i = 0, 1).
(Homotopy of simplicial maps need not be symmetric.) Again we refer to [5, Definition 5.1] or [6, I.6] for
more explanation. Here only dimensions 0 and 1 matter. For example, g ◦ f homotopic to idA implies
that h[0](a, 0) = g(f(a)) and h[0](a, 1) = a for all a ∈ A0. Analyzing h[1](s(a), 0→1) one finds that there
must be an edge from g(f(a)) to a and vice versa, since Kan graphs are symmetric. This motivates the
following proposition.

Proposition 2.5 Let data be as in Definition 2.2. Then there exist f0 : A0 → B0, g0 : B0 → A0 and
f1 : A1 → B1, g1 : B1 → A1 such that:

1. for all a in A0 there exists u : a→ g0(f0(a)) in A1,

2. for all b in B0 there exists v : b→ f0(g0(b)) in B1,

3. for all u in A1, f0(di(u)) = di(f1(u)) (i = 0, 1),

4. for all v in B1, g0(di(v)) = di(g1(v)) (i = 0, 1),

5. (crucial!) f1(s(a)) = s(f0(a)) for all a ∈ A0 and g1(s(b)) = s(g0(b)) for all b ∈ B0.

Proof. We present three proofs, all based on classical logic.

First proof. The data in Definition 2.2 defines a Kan fibration p : E → ∆1 as in Definition 2.3. Now
the proposition follows immediately from the fact that the fibers of 0 and 1 are homotopy equivalent [5,
Corollary 7.11].

Second proof. Using clause (3) in Definition 2.2 we define f0 = d0 ◦ fill1 and g0 = d1 ◦ fill1. Then
we have fill1(a) : a→ f0(a) and fill1(f0(a)) : g0(f0(a))→ f0(a), so fill2(fill1(a),fill1(f0(a)), f0(a)) : a→
g0(f0(a)). This proves (1), and (2) is proved similarly.

To define f1, let u ∈ A1. We distinguish between u degenerate or not. If u is degenerate, i.e.,
equal to s(a) for some a in A0, then u = s(di(u)) and we define f1(u) = s(f0(d0(u))). Otherwise,
using clauses (3) and (4) in Definition 2.2, e = fill2(d1(u), u,fill1(d1(u))) : d0(u) → f0(d1(u)) and
f = fill1(d0(u)) : d0(u) → f0(d0(u)), and so fill2(d0(u), e, f) : f0(d1(u)) → f0(d0(u)). It follows that f1
defined by f1(u) = fill2(d0(u), e, f) satisfies (3). Similarly we can define g1 satisfying (4). Both f1 and
g1 satisfy (5) per construction.

Third proof. This proof differs from the previous in that we replace the degeneracy test by the
test d0(u) = d1(u). In other words, we put f1(u) = s(f0(d0(u))) for all selfloops u instead of only
for the degenerate one. From the constructive point of view we use a different instance of the Law of
the Excluded Middle. But even from the classical point of view the proofs are different: the resulting
homotopy equivalences may not be the same.

The next result is that some use of classical logic is essential in this argument, because of the soundness
of Kripke semantics for intuitionistic logic [7].

Proposition 2.6 The previous proposition does not hold in a Kripke model over the poset 0 6 1 6 2.
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Day A0 A1 G B1 B0

0 {a, a′} {s(a), s(a′)} {w : a→b, w′ : a′→b′} {s(b), s(b′), z : b→b, z′ : b′→b′} {b, b′}
1 +{u : a→a′, u′ : a′→a} +{x : a→b′, x′ : a′→b} +{v : b→b′, v′ : b′→b}
2 {a=a′} {u=u′=s(a)=s(a′)} {x=x′=w=w′} {z=v=v′=z′ , s(b)=s(b′)} {b=b′}

Table 1: Three days in the life of A0, A1, G,B1, B0 (only what changes)

Proof. We shall construct the Kripke model X. The intuition is that X evolves over time as X(0) →
X(1) → X(2). We can interpret the transition from X(i) to X(j) as adding new elements or equating
elements, i.e., extending the equality relation. Table 1 shows A0, A1, B0, B1, G changing over time.

In words, Table 1 shows how edges are added from day 0 to day 1. From day 1 to day 2, A0

collapses to one point with all edges degenerated; also B0 collapses to one point, but the edges z, v, z′, v′

collapse into one non-degenerated self-loop; G collapses to one edge. The filling operations are mostly
self-evident, with some notable exceptions. One has to take fill2(a,w,w) = z and fill2(a′, w′, w′) = z′

from day 0, one cannot use fill2(a,w,w) = s(b) or fill2(a′, w′, w′) = s(b′) instead. The reason is that
fill2(a,w, x) = v 6= s(b) from day 1, and collapsing on day 2 yields fill2(a,w,w) = fill2(a,w, x). For
similar reasons, fill2(s(b), z) = z and not s(b).

All preconditions are now satisfied in the Kripke sense, but there is no way to define f0, f1, g0, g1
satisfying the required properties. Indeed, the function f0(0) has to be a, a′ 7−→ b, b′ or a, a′ 7−→ b′, b. In
the first case we must have to have f1(1)(u) = v, in the second case f1(1)(u) = v′. But then there is a
problem in defining f1(2) which has to send s(a) both to s(b) and to v = v′, see the diagram below. In
the following section we describe the formal verification of this proof.

u s(a) s(a) s(a)

A1(0) //

f1(0)

��

A1(1) //

f1(1)

��

A1(2)

f1(2)

��

A1(0) //

f1(0)

��

A1(1) //

f1(1)

��

A1(2)

f1(2)

��
B1(0) // B1(1) // B1(2) B1(0) // B1(1) // B1(2)

v or v′ v = v′ s(b) s(b)

3 Formal verification

Despite its compact formulation, the counterexample has a considerable complexity. For example, for
each day the Kan conditions have to be verified, and for day 1 this amounts to 66 cases. Also, due to the
identifications on day 2, one has to verify that equality is a congruence with respect to every function
and relation, and in particular with respect to the filling operations.

In order to achieve the highest level of accuracy, we have formalized the complete countermodel in
a fragment of first-order logic called coherent logic [3]. There are basically two things to verify: (1) the
countermodel is indeed a Kripke model satisfying in every state the Kan conditions in Definition 2.2; (2)
adding functions satisfying the conditions in Proposition 2.6 to the Kripke model leads to a contradiction.

We flatten all functions into functional relations and give all relations one extra parameter ranging
over the poset 0 6 1 6 2. Examples of axioms are now:

A0(0, a) B0(0, b) B0(0, b′) G(0, w) edge(0, w, a, b) G(1, x) edge(1, x, a, b′) eq1(2, w, x)

edge(S,E, Ps, Pt) ⇐⇒ d1(S,E, Ps) ∧ d0(S,E, Pt) loop(S, P,E) ⇐⇒ s(S, P,E) ∧ edge(S,E, P, P )

Capitalized names (in term positions) denote variables, implicitly universally quantified. All predicates
are monotonic in the state, including, for example, the flattened filling operations:

S1 < S2 ∧ fill2(S1, P, E1, E2, E3)⇒ fill2(S2, P, E1, E2, E3)
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The equality relations eq0, eq1 are congruences with respect to all predicates. An example of a Kan
condition is:

A0(S, P1) ∧A0(S, P2) ∧B0(S, P3) ∧A1(S,E1) ∧G(S,E2) ∧ edge(S,E1, P1, P2), edge(S,E2, P1, P3)

⇒ ∃E3 (fill2(S, P1, E1, E2, E3) ∧G(S,E3) ∧ edge(S,E3, P2, P3))

Verification (1) is now essentially a model check, which can be performed in reasonable time.
Verification (2) is essentially a proof of the contradiction arising when one adds an arbitrary homotopy

equivalence of the fibers, in the form of functional relations f0, g0, f1, g1, satisfying the conditions in
Proposition 2.6, to the Kripke model. Examples of such axioms are:

A0(S, P )⇒ f0(S, P, b) ∨ f0(S, P, b′) B0(S, P )⇒ g0(S, P, a) ∨ g0(S, P, a′)

A0(0, P1) ∧A0(0, P2) ∧B0(0, P3) ∧ f0(0, P1, P3) ∧ g0(0, P3, P2)⇒ eq0(0, P1, P2)

f0(S, P1, P2) ∧ s(S, P1, E1) ∧ s(S, P2, E2)⇒ f1(S,E1, E2)

The complete set of axioms for f0, g0, f1, g1 should express functionality, naturality with respect to
s, d0, d1, and monotonicity in the state. Moreover, eq0, eq1 should be congruences with respect to
f0, g0, f1, g1 as well. Once one has added these axioms, a contradiction is readily inferred. All relevant
files can be found at http://uf-ias-2012.wikispaces.com/Semi-simplicial+types under Update
6/24.

We finish this section by expanding shortly on ‘adding a homotopy equivalence to the Kripke model’,
as this touches the essence of the Kripke semantics of intuitionistic logic. What this phrase actually
means is that one adds a homotopy equivalence in each state requiring that these homotopy equivalences
are monotonic in the state. This monotonicity is crucial for intuitionistic provability. Even though there
are fine homotopy equivalences on day 1 (e.g., with f0(a) = f0(a′) = b, f1(s(a)) = f1(s(a′)) = f1(v) =
f1(v′) = s(b) etc.), these cannot be used in the Kripke model since f0 is different on day 0.

4 Discussion and Conclusions

We have shown that a basic property of Kan fibrations, the homotopy equivalence of fibers over a
connected base, cannot be proved constructively. It will be possible to obtain similar unprovability
results for other properties of Kan fibrations.

We would like to say a few words about the correct interpretation of such unprovability results. In
the first place, our unprovability result concerns the usual formulation of Kan simplicial set theory. It
does not in any way preclude that it is possible to reformulate Kan simplicial set theory such that the
basics can be proved constructively. One well-known technique is to include extra information in the
definitions. In the case of a Kan graph one could, for example, mark the degenerate edges. As this
amounts to postulating the decidability of degeneracy, the second proof of Proposition 2.5 would become
constructive.

However, it is not clear whether this idea can be generalized. Let marked simplicial sets be simplicial
sets in which the degenerate objects are marked. To be of interest, marked simplicial sets should be a
category with sufficient extra structure to form a model of type theory. It is not clear how exponentials can
be marked in a constructive way. We consider the possible constructive reformulation of Kan simplicial
set theory as a challenging open problem.
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