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Abstract

We present an approach to formalizing non-
monotonic multiple inheritance networks by
combining concepts from logic programming
and multi-valued logics in a uniform frame-
work. A Horn-clause logic language is used for
specifying inheritance networks. This allows a
natural representation of class-subclass hierar-
chies and ambiguous inheritance networks. It
also provides means for resolving ambiguities
resulting from the network topology, but which
are not inherent to the problem. We provide a
model theory for the language and show how a
uniqgue intended model can be associated with
every inheritance network. This model resem-
bles the unique extension obtained in the skep-
tical theory ofinheritance [Hor-87], but is more
general. Finally, we present an algorithm which
realizes the aforementioned semantics.

1 Infroduction

The notion of nonmonotonic inheritance is fundamental
to common-sense reasoning. For instance, knowing that
Bateman is a mammal, one would conclude that it does
not fly. This is because normally mammals do not fly
and in the absence of any other information, we regard
Bateman as inheriting its inability to fly from mammals.
If one later learns that Bateman is a bat, then he will
probably change his mind, concluding that it does fly.
However, after learning that Bateman is a dead bat, he
would again change his mind concluding that it cannot
fly. In this example, knowing that Bateman is a bat
Is more informative than knowing that it is a mammal,
and knowing that it is a dead bat is even more informa-
tive, as far as Bateman's ability to fly is concerned. In
essence, the knowledge that an individual belongs to a
subclass provides more information about the individual
than the knowledge that the individual belongs to its
superclass. We also notice that the first two conclusions
are defeasible, while the third one is not.

Birds normally fly, while toys normally do not. [f an
item is a toy bird, then we conclude that it does not fly.
This is because the item being a toy contributes more
evidence in support of its inability to fly than does bird
in support of its flying ability. Notice that there is no

NY 11794.

class-subclass relationship between toys and birds.

Some approaches to inheritance (e.g., [Touretzky,
1980], [Horty et al., 1987]) are proof-theoretic. They
give algorithms for computing sets of acceptable paths
supported by a network, rather than specifying the
states of the world the network represents. Others (e.g.,
[Etherington, 1983], [Haugh, 1988], [Krishnaprasad et
al., 1988a], [Przymusinska and Gelfond, 1988], [Th oma-
son e/ a/., 1987]) present translations of inheritance net-
works into some standard logical formalism. The seman-
tics of the networks is then captured through the model
theory for the respective logical formalism. In particular,
a theory based on prioritized circumscription transforms
a network into a set of first-order sentences augmented
with meta-level minimality constraints embodying pref-
erences [Krishnaprasad et a/., 1988a]. The first-order
models of the resulting translation are the states of the
world the network represents. The circumscriptive the-
ory of [Haugh, 1988] formalizes the network at a meta-
level. The set of models of the translation in [Haugh,
1988] encodes the meaning of the network. [Przymusin-
ska and Gelfond, 1988] views a network as representing
a set of beliefs of a rational agent, and captures this
interpretation by translating the network into Moore's
Autoepistemic logic [Moore, 1985]. The preference crite-
ria is axiomatized in the translated theory. [Pearl, 1988]
provides probabilistic semantics to networks, by assign-
iIng to them a set of possible worlds and an associated
probability distribution.

We propose to view networks as specifying a set of
belief-evidence pairs. "Strength of evidence” is explicitly
incorporated into the object language, and we have de-
veloped a model theory for the resulting logic. The dom-
inance of property inheritance from a subclass over that
from a superclass is captured by making the evidence
contributed by subclass membership stronger than that
contributed by superclass membership. This provides an
evidence based semantics to networks as a set of justified
beliefs.

In this paper, we present a logic to formalize inher-
itance networks by combining concepts from logic pro-
gramming and multi-valued logics in a uniform frame-
work. The main ideas behind this approach are as fol-
lows:

A naive formalization of inheritance networks in
first-order logic leads to inconsistencies. As we do
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not have a satisfactory means of modifying a the-
ory in the presence of "equally strong" conflicting
evidences, we pursue an approach in which contra-
diction can be represented explicitly [Belnap, 1977a]
[Blair, 1987] [Kifer and Lozinskii, 1989] [Thomason
et al., 1987], thereby providing an adequate rep-
resentational framework for ambiguous inheritance
networks.

« Ambiguity in inheritance networks leads to an ex-
plosion in the number of expansions that could
arise. (See [Etherington, 1983] [Haugh, 1988] [Kr-
iIshnaprasad et a/., 1988a] [Padgham, 1988] [Przy-
musinska and Gelfond, 1988] [Touretzky, 1986].)
Furthermore, reasoning in the intersection of all the
expansions is not computationally viable [Touret-
zky, 1987]. Thus, computational efficiency consider-
ations force us to look in the direction of formalisms
that associate fewer models to networks. In this pa-
per, we show how a unique model can be associated
with every inheritance network. This resembles the
Skeptical theory of non-monotonic inheritance net-
works of [Horty et a/., 1987], but is more general.

« To compute property inheritance, we need to per-
form certain bookkeeping functions such as track-
ing down the relative strengths of evidences. This
Is formalized by specifying how true or false a given
statement is and how much is known about it [Gins-
berg, 1980].

« Qur specification language is a Horn clause lan-
guage. The "ordering" of the evidences in the rule
heads embodies the meta-knowledge about the pri-
orities associated with the abnormality predicates
In the circumscriptive theory of [Krishnaprasad et
al., 1988a]. The truth and the information order-
Ings can be incorporated into the logic language by
extending its syntax and modifying the definition of
satisfaction, that is, truth of a sentence in a model,
along the same lines as in [Blair, 1987] [Kifer and
Li, 1988] [Kifer and Lozinskii, 1989].

« Most importantly, our approach is based on solid
logic foundations, which provides a basis for the
design and optimization of provably correct inheri-
tance algorithms.

In summary, the evidence-based logic developed here
gives an alternative way of representing inheritance net-
works. In addition, this formalism can also be used to
specify the formal semantics of inheritance networks by
translating the networks into it.

In Section 2, we develop a logical framework for in-
heritance networks. In Section 3, we discuss the charac-
teristics of our approach and present extensions such as
"preferential” inheritance and inheritance through paths
with "negative" arcs.

2 An Evidence-Based Theory
2.1 Language

A term is an individual constant or a variable. An atom
IS a proposition or a formula q(t), where q is a unary
predicate and t is a term. Literals are of the form p: r,
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where p is an atom and r is a priority constant. A rule
Is a statement of the formp : r <= q 9, where p and
qg are atoms, r and are priority constants. A fact is a
ground literal. A clause is either a fact or a rule.

To capture dependency relationship among predicates,

we define « relation as follows.

Definition 1 g < p (read q precedes p) iff either there
is a rule in P ofthe formp : r <= q:+, or, recursively,
p:r <= r:Axand q < r.

An inheritance specification is a set of clauses, such
that < is an acyclic partial order on atoms. This elim-
inates the possibility of "recursive" inheritance, whose
utility is unclear.

2.2 Priority constants

The priority constant r in p : r represents the type and
the relative strength of evidence in support of p. Fol-
lowing [Belnap, 1977a] [Ginsberg, 1986J [Fitting, 1988],
the priority constants are viewed on two different scales:
one on the basis of their truth-content and the other on
the basis of their information-content. For instance, —3
in the negative literal p : —3 represents an evidence of
strength 3 supporting -p. The following relations are
defined on the set of priority constants.

« <k iIs a semi-lattice order, i.e., a partial order
equipped with the least upper bound operation. We

will use lubk(A) to denote the least upper bound of
the set A.

« =t Is an equivalence relation on priority constants
with respect to truth-content. For our purposes,
we need only three equivalence classes representing
differing information levels of truth, falsity or in-
consistency in the evidence for an atom. To model
both strict and defeasible links, we require that each
equivalence class of = has a unique <g-maximal el-
ement. These can be thought of as signifying true,
false or top (inconsistent) element and may be used
to override any default conclusions that may be
derivable from the specification.

Additionally, we define:
o (T <k 7) iff (T <a ) A(r#7)
® (T <tk ‘)’) iff (T <k 7) A (T T 1’).

2.3 Interpretation and Model

Let E be a set of clauses. The domain D of any Her-
brand interpretation is collection of all individual con-
stants mentioned in E. A Herbrand base of E is a collec-
tion of all facts of the form p : r, where p is a ground
atom and r is a priority constant. A Herbrand interpre-
tation | of E is a subset of the Herbrand base of E, such
that if p: 7 € I and A <;x 7 then p: A € 1. Furthermore,
we require that if p: A€ I and p: 7 € I then )\ =; 7.

Given two interpretations I and J, J T I (resp. J Cea
I) iff for every literal p: 7 € J, there exists a literalp: )\ €
I such that 7 <, A (resp. 7 <;x A). Note that J T I
1s equivalent to saying that J C 1. An interpretation I
18 minimal in a set of interpretations Sif - IJ € S :
J Cx Iand it is mazimalif -~ 3J €S:1 i J.




A fact p(t) : 7 is satisfied in I (denoted I = p(t): )
iff there is a fact p(t) : A € I such that 7 <3 . A fact
p(t) : T is strongly satisfied in I (denoted I =, p(t): 7)
iff 3 p(t) : A € 1 such that v <, A. Equivalently, I
= p(t) ‘Tlffp(i) T €l

A ground rule p : 7 <& q : v 18 satisfied in I iff
whenever I . ¢ : v, 1 s p: 7. A nonground
rule p: 7 & q : v is satisfied in I 1iff all its ground
instances arc satisfied in |I. (A fact may be thought of

as a rule whose empty body is strongly satisfied in all
interpretations.)

A set of clauses P is safisfied in I, if all its clauses
are satisfied in I. A literal p : A is supported by P in |
if A < lube ({v | P:7v & q:6§€ and |
= g :6}). In words, p : A is supported by P in | if
the combined conclusion derived from P on the basis of
assuming facts in | strongly satisfies p : A.

An interpretation | is a model of a set of clauses P iff
P is satisfied under |I. A model | of P is supported if every
literal p: v € | is supported by P in |

2.4 Existence of Supported Models

In this section, we show that every inheritance specifica-
tion has supported models.

Lemma 1 Every inheritance specification P
only of facts admits a supported Herbrand model.

By stratifying P based on <-ordering, a supported
model can be constructed in a standard way, using tech-
nigues similar to those described Iin [Apt et al, 1987].

Lemma 2 Every inheritance specification P admits a

supported Herbrand model.

2.5 Unique model semantics

In this section, we demonstrate that a unique supported
model can be naturally associated with every inheritance
specification.

consist-
there exists a unique supported Her-

Lemma 3 For an inheritance specification, P,
ing of facts only,
brand model of P.

Given an inheritance specification P, we define an op-
erator Tp that maps a Herbrand interpretation | into a
Herbrand interpretation Tp(l) as follows.

Definition 2 7p(I) is a C-minimal interpretation sat-

1sfymgthesetofhterals{p T | p:T&q:v158
ground instance of a clause in P and I =44 ¢ : v }-

Note that Tp is not monotonic with respect to Cy. For
instance, let P consist of a single rule p: -1 <& ¢: +1
and consider a pair of interpretations I and J such that
I = {p:—-1,¢g:+2}and) = {p: —2,q: —3}. (See Fig-
ure 1.) Clearly, I Ci J. However, Tp(l) {p: -1}
and 7p(J) = Fortunately, 7p has the following
weaker propcrty that saves the situation: if I C¢s J then

Tp(I) T Tp(J).

Lemma 4 Tp(1) Coi 1 iff I is a model of P, and Tp (1}
= 1 tff I is a supported model of P.

We show the existence and uniqueness of a supported
model of an inheritance specification P in two steps.

consisting

Theorem 1 Every inheritance specification P admits at
most one supported model Equivalently, there exists at
most one solution to the fixpoint equation Tp(l) = .

The unique supported model for P, denoted M p, can
b e described slim;_, o Tﬁ(@)ut this does not give us

an efficient way of computing the fixpoint of 7p because
the successive approximations change nonmonotonically.
However, we can build Mp monotonically by an iterated

fixpoint construction, similar to [Apt et a/, 1987].

For convenience of exposition, and wig., we assume
that predicates appearing as facts and those that appear
as heads of the rules are disjoint.

Inheritance Algorithm

Let H be the set of ground atoms, A; be the set of
atoms whose literals acquire meaning at the " step of
the iteration, and M; be the set of literals at the [
step of the iteration representing the intermediate state
iIn the computation of the supported model for P. Then

o A, = 0.
e My 1s the Ci-minimal interpretation satisfying all
ground facts in P.

o A;,1. = A U {p | p is a <-minimal ground
atom in (H — A;)}. (Recall: < is the “depends on”

relation defined in Section 2.1.)

e M;,1 i1s the Cr-minimal interpretation satlsfylng
M; U {p:7 | pisa <-minimal ground atom in
(H—A;), p:7 < ¢:~isa ground instance of a
clause in P and M; kEw g : v}

o Mp = U,-M,'.

Theorem 2 The set of literals Mp computed by the al-
gorithm s a supported model of P.

Note that absence of function symbols in our language
makes our approach computationally viable.
From Theorem 1 and Theorem 2 it follows that

specification P has a
associated with it

inheritance
supported model Mp

Theorem 3 Every
unique

3 Discussion

In this section, we illustrate our theory on a number of
examples. In particular, we explain how this language
can be used to specify inheritance networks. For def-
Initeness let us pick the semi-lattice in Figure 1. The
priority constants are numbers annotated with symbols

+ —, or * . All the constants with the same sign are
truth-equivalent w.r.t.=  (i.e., —1 = —3, "2 = *5,
etc.). Intuitively, constants +1, +2,... denote the degree
of confidence that a fact is true, while —1, —2,... denote

the degree of confidence in the falsehood ofa fact. The
constants *1,*2,... represent the degree ofinconsistency
in the evidences supporting facts. Also +w, —w, and *w
represent certain information about truth, falsity and
Inconsistency respectively.

Consider the <k-ordering depicted in Figure 1. The

meaning resulting from such a choice resembles the
meaning attributed to networks by the skeptical theory
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Figure 1: Information ordering for skeptical semantics

of [Horty et a/., 1987]. Intuitively, p(a) : +n € Mp
means that "a has property p", and p(a) : —m € Mp
stands for "a has property -p". In contrast, p(a) : ®l €
Mp is interpreted as ambiguity about p{a).

To evaluate a ground atomic query p with respect to
an inheritance specification P, determine the maximal
support, r, of a corresponding literal p : rin Mp. Note
that this is well- defined by the definition of an interpre-
tation.

QOur inheritance networks are bipolar DAGs, that is,
both positive and negative arcs are present. Our formal-
ism is powerful enough to specify inheritances ofindivid-
uals known to possess negated properties. Furthermore,
we take the view of inheritance in which individuals are
"moving upwards" similar to the one taken in [Horty et
al., 1987] and [Krishnaprasad et a/., 1988a]. The prop-
erties of an individual are obtained by forward chaining
and there is no coupling among the inheritances ofindi-

viduals belonging to the same class (unlike [Touretzky,
1987]).

Paraphrasing the famous Tweety example, we get the
following rules.

o fly(z) : +1 <« bird(z) : +1.

o fly(z): -2 < penguin(z): +1.
e bird(z) : +w <« penguin(z) : +w.
e penguin(TWEETY) : 4w.

As we see, the relative magnitude of priority constants
In the heads of the rules captures the intuition that the
default conclusion obtained by applying the second rule
takes precedence over the conclusion obtained by the first
rule. Note that, as the name suggests, priority constants
represent the relative strength of evidences. Thus, the
absolute magnitude of priority constants has no special
significance, and only the relative aspect counts. Also,
the relative strength of evidence that enables the body
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has no bearing on the relative strength of evidence in the
conclusion, in the case of default rules. This is because,
we are modelling defeasible reasoning, where at each
step, we hold on to the most plausible conclusion, and
where bodies of different rules are considered as inde-
pendent sources ofsupport, whose relative strengths are
determined by the priority constants in rule heads. Note
that these aspects distinguish our formalization from
probabilistic approaches to inheritance [Pearl, 1988].

The priority constants are not restricted to be nu-
merical values. One may in fact use constants repre-
senting the nodes of the network as priorities, with the
information-ordering specified by the network topology.
This is illustrated below by rewriting the first two de-
feasible rules of the Tweety example as follows, where 1
represents the least positive evidence.

o fly(z): +bird < bird(2) : +L.
o fly(z) : —penguin < penguin(z): +.1.

The ordering < Is set-up Iin such a way that the
evidence-content of penguin is stronger than that of bird,
which can be inferred from the network, because there
Is a directed path from penguin to bird.

Our theory allows representation of both strict and
defeasible links. To specify that some of the rules are
exception-free, we may add rules of the form: p: —w <=
q:+4+w,p:+w <= q: —wetc. These rules let guaranteed
conclusions to propagate as such, which can be used to
override conflicting default conclusions.

If the body of the rule is true by default, then the con-
clusion drawn from this rule must only have the status of
a default conclusion. Priorities are used essentially only
In arbitrating between conflicting conclusions; their ab-
solute values are insignificant. The exception-free rules
let us propagate and derive new conclusions that are
known to be true or false beyond doubt. This is illus-
trated by the dead bird example:

e dead(DODO) : +strict.

e bird(DODO) : +strict.

o fly(z): —strict < dead(z): +strict.

o fly(z): +default < bird(z) : +strict.
Even though there are conflicting conclusions about the
flying ability of Dodo, the conflict can be resolved in
favour of Dodo being unable to fly by virtue of being
dead. This is because the latter conclusion is strict, as
opposed to the default conclusion through bird.

To illustrate the treatment of ambiguity, we consider
the Nixon diamond example.

o republican(NIXON) : 4w.

o quaker(NIXON) : 4w.

e pacifist(z): —1 < republican(z): +1.

o pacifist(z) : +1 <« quaker(z): +1.
The unique supported model associated with this speci-
fication contains pacifisttNIXON) : *1, meaning that

our knowledge about Nixon being a pacifist is inconsis-
tent.

Our formalization allows inheritances through paths
containing negative arcs.



df dt
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Figure 2: Ginsberg's bilattice for default reasoning

e Pro_American(GBR) : +w.

e Pro_American(INDIA) : +w.

e Pro_Soviet(CUBA): +w.

e Pro_Soviet(INDIA) : +w.

e Vote(z) : +1 < Pro_American(z): +w.

o Vote(z) : —1 < Pro_Soviel(z) : +w.

o Support_Contras_Rebels(z): +1 & Vote(z): +1.
e Support_Sandinistas(z) : +1 < Vote(z): —1.

One may interpret "+" as a "yes"-vote, "—" as a "no"-
vote and "*" as an abstention. From the above specifica-
tion we conclude that GBR supports the Contra rebels,
while Cuba supports the Sandinistas. We cannot offer
any conclusions about India's intentions because it ab-
stains from voting.

There are advantages over the theory presented in
[Horty et a/., 1987] that accrue out of ordering evidences
to resolve ambiguities that are not inherent to the prob-
lem. This is illustrated by the following example.

o toy(JAY) : +w.
o bird(JAY): +w.
o fly(z): -2 « toy(z): +w.
o fly(z) : +1 « bird(2) : +w.

Even though the topology of this network resembles
the one for Nixon diamond, we may resolve the ambigu-
ity in favour of toys being unable to fly, while [Horty et
al., 1987] cannot differentiate between these two cases.

The notion of supportedness buys us certain advan-
tages over [Ginsberg, 1986] as illustrated below.

o bird. (Fact)
o bird = flies. (Defeasible rule)

e flies — -acro. (Strict rule)

According to [Ginsberg, 1986J, this admits twc
Cix-minimal models, where the truth-lattice and
iInformation-lattice corresponding to these values is given
in Figure 2. In one model flies is true by default and
aero is false by default, while in the other flies is false,
while aero is unknown.

Ginsberg notes that this does not allow one to con-
clude that the bird flies by default, because such a con-
clusion is not true Iin all Cg-minimal models. He goes
on to propose a criterion to prefer the first model over
the second one by formalizing a notion of "strength of
assumption” and discarding the second model by virtue
of being based on "unreasonably" strong assumptions
compared to the first one. We, on the other hand, do
not run into such a problem. Indeed, in our formalism
we would represent that problem as follows:

o bird : +w.

o flies: +1 « bird: +1.

® acro: —w < flies: +w.
® acro: —1 & flies: +1.

This admits a unique supported model containing flies:
+7 and acro: —1 . The interpretation corresponding to
the second minimal model in the Ginsberg's approach is
not supported because flies: —w (i.e., flies is false) does
not have any justification.

One may try to translate inheritance networks into
our logic to give them a formal semantics. The main
problem here is the choice of priority constants based on
the network topology. We will sketch such an approach
below.

Define the evidence set corresponding to a network to
be {+,—} x ({L,w} U N). The first component of an
evidence represents its truth-content, while the second
component captures the information-content. repre-
sents minimum information, while 1 represents maxi-
mum information. The ordering of entities in N on the
information scale is consistent with the -<-ordering of the
corresponding nodes in the network. That is, if p is a
subclass of q (p < q), then +¢ <x +p and — g <, -fp
(similarly for — p).

We choose priority constants to represent finite subsets
of the evidence set. Informally, a priority constant speci-
files the set of evidences in support ofan atom. The truth
and the information-content of a priority constant, 7r, is
determined solely by the <(-maximal elements of IT. For
Instance, in the Tweety example, the priority constant
corresponding to fly(TWEETY) is {-fbird, —penguin},
which is equivalent to {—penguin}. The Ilubu of a set
of priority constants is obtained by taking their union.
For instance, in the Nixon diamond example, the lubk of
{-republican}  and {-i-quaker} is  {-republican,+quaker}.
Because -republican and -hquaker are incomparable on
the information scale and they have conflicting truth
values, the conclusion about Nixon's pacifism is incon-
sistent.

The translation of a positive arc from an individual
node i to a property node p is: p(i) : {+w}; a negative
arc is translated as: p{i) : {—w}. The translation of a
positive arc from a property node p to a property node q
is: p(z) : {+9} < q(z): {+L}; the translation of a neg-
ative arc is: p(z) : {—¢} < ¢(z): {+L1}. The meaning
assigned to an inheritance network corresponds to the
uniqgue supported model associated with its translation.

An advantage ofour approach is that inheritance spec-
ifications can be designed in the same style as Prolog
programs. This is because the meaning of a predicate
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depends only on the meanings assigned to the predicates
In bodies of rules defining that predicate.

4 Conclusion

We have described a logical framework for a theory of
iInheritance obtained by a novel combination of con-
cepts from logic programming and multi-valued logics.
A Horn-clause logic language is used to specify the net-
works. A model theory for the language is provided and
a unique supported model is associated with each net-
work. We have also presented an algorithm to compute
this model. Our theory resembles the skeptical theory
of [Horty et a/., 1987], but is more general. "Preferen-
tial” inheritance and inheritance through paths contain-
Ing negative arcs can be expressed in our formalism. Our
framework can also be extended to formalize credulous
theories of inheritance.
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