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Abstract—Homotopy theory can be developed synthetically in
homotopy type theory, using types to describe spaces, the identity
type to describe paths in a space, and iterated identity types to
describe higher-dimensional paths. While some aspects of homo-
topy theory have been developed synthetically and formalized
in proof assistants, some seemingly easy examples have proved
difficult because the required manipulations of paths becomes
complicated. In this paper, we describe a cubical approach to
developing homotopy theory within type theory. The identity type
is complemented with higher-dimensional cube types, such as a
type of squares, dependent on four points and four lines, and a
type of three-dimensional cubes, dependent on the boundary of a
cube. Path-over-a-path types and higher generalizations are used
to describe cubes in a fibration over a cube in the base. These
higher-dimensional cube and path-over types can be defined
from the usual identity type, but isolating them as independent
conceptual abstractions has allowed for the formalization of some
previously difficult examples.

I. INTRODUCTION

Homotopy theory is the study of spaces by way of their
points, paths (between points), homotopies (paths or continu-
ous deformations between paths), homotopies between homo-
topies (paths between paths between paths), and so on. This
area of mathematics can be developed synthetically by using
the homotopy-theoretic structure of types in Martin-Löf type
theory [3, 13, 14, 20, 30, 31, 32]. Using principles inspired by
these semantics, such as higher inductive types [21, 22, 26]
and Voevodsky’s univalence axiom [16, 31], some aspects of
homotopy theory have been developed and formalized using
the Agda [24] and Coq [10] proof assistants. These include
calculations of some homotopy groups of spheres [17, 19,
29]; constructions of the Hopf fibration [29], of covering
spaces [12], and of Eilenberg-MacLane spaces [18]; and proofs
of the Freudenthal suspension theorem [29], the Blakers-
Massey theorem, the van Kampen theorem [29], and the
Mayer-Vietoris theorem [8]. Ideas from synthetic homotopy
theory have also been applied to represent the patch theories
that arise in version control using higher inductive types [2].

Many of the results mentioned above were posed as chal-
lenge problems during the 2012–2013 year on univalent foun-
dations at the Institute for Advanced Study. One additional
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challenge problem from that year, which was anticipated to
be less difficult than those listed above, was to show that
the higher inductive definition of the torus is equivalent to
a product of two circles.

In homotopy type theory, the elements of a type correspond
to points of a space, and the equality proofs in a type
correspond to paths (we write Path a b for the equality type). A
higher inductive type for the circle (see [19, 29]) is generated
by a point and a loop. A circle

base
loop

corresponds to a higher inductive type with one point construc-
tor base : S1 and one path constructor loop : Path base base.

Similarly, we can describe a torus by identifying the op-
posite sides of a square (glue two sides together to form a
cylinder, and then glue the two ends of the cylinder together):

f

q
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p p

Writing p · q for composition of paths in diagramatic order,
the torus can be represented by a higher inductive type with
the following constructors (see [29, Section 6.6]):

a : T
p : Path a a
q : Path a a
f : Path (p · q) (q · p)

The f (“face”) constructor generates a path between paths. It
represents the inside of the above square as a disc between
the “left then bottom” and “top then right” composites. Alge-
braically, the torus is generated by two commuting loops.

To prove that the torus is equivalent to the product of two
circles means to give functions t2c : T � S1 × S1 and c2t :
S1 × S1 � T and show that they are mutually inverse (up to
paths). At first glance, it seems like it should be simple to
define the functions back and forth and prove that they are
mutually inverse using the recursion and induction principles
for the circle and the torus. And indeed, it is not difficult
to define the two functions. However, at the end of the IAS
year, this problem had not been solved, though Sojakova and
Lumsdaine had each given proof sketches, and Sojakova’s was



later written up in a detailed 25-page proof [28]. The reason
for the complexity is that the path manipulation required to
prove the path-between-path goals gets quite involved.

In this paper, we develop a cubical approach to synthetic
homotopy theory. Using this approach and the libraries we
develop, the proof that the torus is the product of two circles
can be formalized in Agda in around 100 lines of code.1 The
approach has also proved useful for the formalization of a
“three-by-three” lemma about pushouts that is used in the
construction of the Hopf fibration,2 and in resolving a question
about a patch theory represented as a higher inductive type [2].
The approach was also used by Cavallo to simplify the proof
of the Mayer-Vietoris theorem [8].

Inspired by heterogeneous equality [23], the cubical sets
models of type theory [5], and cubical methods in higher
category theory [6], the main idea of the approach is to work
with cube types that generalize the path type Path a b. For
example, in this paper, we will consider a type of squares
Square l t b r, dependent on four paths that fit into a square:
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We will also consider a type of cubes dependent on six
squares giving its sides. Another key ingredient is to work
systematically with path-over-a path and higher cube-over-a-
cube types to represent cubes in a dependent type.

While our approach fits nicely with work in progress on
new cubical type theories [1, 7, 11, 25], the present paper
can be conducted entirely by making appropriate definitions
in “book homotopy type theory” [29]—Martin-Löf type theory
with the univalence axiom and higher inductive types. Higher
cubes can be defined in terms of higher paths, and cube-over-
a-cube types can be reduced to homogeneous paths. Thus,
our constructions can be interpreted in the known models of
homotopy type theory with univalence and higher inductive
types (see [16, 22, 27]). While cubes can be reduced away in
this way, for engineering reasons, we have found it convenient
in Agda to use new inductive families to represent cube types.

We begin by discussing a notion of heterogeneous equality
(Section II), and a related path-over-a-path type (Section III).
Then, we discuss squares (Section IV) and cubes (Section V).
Next, we discuss the torus example (Section VI), and the three-
by-three pushout lemma (Section VII).

II. HETEROGENEOUS EQUALITY

The path type Path {A} a0 a1 (an inductive family with one
constructor id : Path a0 a0) is sometimes called homogeneous
equality, because it relates two elements a0 and a1 whose

1The proof is available at github.com/dlicata335/hott-agda,
tag torus-is-s1s1, in the file homotopy/TS1S1.agda; use Agda
version 2.4.2.2.

2Agda code is in the repository github.com/HoTT/HoTT-Agda, but
this was checked using old versions of Agda and the cubical libraries, on a
machine with 250GB of memory.

types are definitionally/judgementally equal. McBride [23]
introduced a heterogeneous equality, which is an equality type
a:A = b:B that relates two elements a:A and b:B which may
have two judgementally distinct types, though the reflexivity
constructor applies only when both the two types and the
two terms are judgementally equal. Heterogeneous equality
is used to elide the reasoning why equations type check from
the equations themselves, which simplifies some constructions.
However, McBride’s heterogeneous equality is logically equiv-
alent to a homogeneous equality type satisfying uniqueness of
identity proofs [23], which is undesirable in homotopy type
theory, because not all types should be sets.

This paper provides an investigation of how to manage
the reasons why equations type check in a setting where
these reasons are proof-relevant. While we cannot ignore the
reason why an equation type checks entirely, we can still
keep the evidence “off to the side”, rather than embedding
it in the equation itself. For example, we can define a type
HEq A B α a b where α : Path {Type} A B and a:A and
b:B, as an inductive family with one reflexivity constructor
hid : HEq A A id a a, which relates a to itself along the
reflexivity path id. This heterogeneous equality relates two
elements of two different types along a specific equality α

between the types.
However, this notion of heterogeneous equality need not

be taken as a primitive, because it can be reduced to the
homogeneous equality type in several equivalent ways. Writ-
ing coe : Path {Type} A B � A � B for the function (defined
by path induction, as transport (λ X � X)) that coerces along
a homogeneous equality, the following types are equivalent
(under the definition of equivalence in [29]):

1) The inductive family HEq A B α a b defined above.
2) Path {B} (coe α a) b – send a over to B using the type

equality α , and compare the result with b.
3) Path {A} a (coe (! α) b) – send b over to A using the

equality α (inverted), and compare the result with a.
4) Define heterogeneous equality by path induction into the

universe: when the type equality α is id, a heterogeneous
equality is a homogeneous equality: HEq’ A A id a b =
Path {A} a b

The equivalences between these types are all immediate by
path induction or induction on HEq: keeping the evidence that
the equation type checks “off to the side” is equivalent to
embedding it in the equation on either side, and to the more
symmetric fourth option. We will argue that, even though it
could be defined away, it is useful to think in terms of such
“off to the side” abstractions.

III. PATH OVER A PATH

A. Type Definition
The heterogeneous equalities HEq A B α a a’ we consider

will often have the property that some of the outer structure
of A and B is the same, and the important part of α happens
inside this outer structure. A typical example is

HEq (Vec Nat (n + m)) (Vec Nat (m + n))
(ap (Vec Nat) (+-comm n m)) v1 v2



where Vec Nat k represents vectors of length k, and v1 :
Vec Nat (n + m) and v2 : Vec Nat (m + n). In this example,
the two types both have the form Vec Nat -, and the reason
why the two types are equal is essentially commutativity of
addition—but we need to use use ap (congruence of equality)
to apply Vec Nat to both sides of the commutativity proof.

Heterogeneous equalities of this form can be simplified
using a factored heterogeneous equality type, which separates
a context (like Vec Nat -) from an equality on the insides of
the context. This is called a path over a path or path-over
type (it is discussed briefly in [29]), and it can be defined as
an inductive family as follows:

data PathOver {A : Type} (C : A � Type) {a1 : A} :
{a2 : A} (α : Path a1 a2)
(c1 : C a1) (c2 : C a2) � Type where

id : {c1 : C a1}� PathOver C id c1 c1

Given a1,a2 : A connected by a path α, along with a dependent
type C : A � Type, this type relates an element of C a1 to an el-
ement of C a2. The endpoints a1 and a2 are implicit arguments
because they can typically be inferred. The constructor id (note
the use of constructor overloading) represents reflexivity over
reflexivity, and says that any reflexive equation where α is also
reflexivity holds. Using path-over, the above example is

PathOver (Vec Nat) (+-comm n m) v1 v2

Here C is Vec Nat, which is applied to n+m to get the type of
v1, to m+n to get the type of v2, and to +-comm n m to get
the proof that the two types are equal.

Because types are elements of a universe, HEq A B α a1 a2
is the special case of PathOver (λ (X : Type) � X) α a1 a2.
Conversely, PathOver can be expressed in terms of heteroge-
neous equality using ap as above. Indeed, the following types
are equivalent:

1) The inductive family PathOver C {a1} {a2} α c1 c2
2) HEq (C a1) (C a2) (ap C α) c1 c2
3) Path {C a2} (transport C α c1) c2
4) Path {C a1} c1 (transport C (! α) c1)
5) PathOver defined by path induction into the universe as

PathOver C id c1 c2 = Path c1 c2

The equivalences are all simple to construct using path induc-
tion or HEq-induction or path-over induction. The final three
options are analogous to the final three ways to render hetero-
geneous equality described above, though using transport C α

instead of the equivalent coe (ap C α).
While we have motivated PathOver as a factored heteroge-

neous equality, there is also a geometric intuition. Dependent
types correspond to fibrations, so a type C : A � Type can be
pictured as its total space Σ a:A. C a projecting down to A by
first projection. A path-over γ : PathOver C α c1 c2 represents
a path σ in Σ a:A. C a between (a1,c1) and (a2,c2), such that
ap fst σ is exactly α. That is, it is a path in the total space that
projects down to, or lies over, α (path pairing pair= α γ will
be made precise below):

A

Σ a:A.C a

fst

a1 a1
α

(a1,c1) (a2,c2)
pair= α γ

We have experimented with two implementations of path-
over in two different Agda libraries. In one library, it is
defined as in the fifth option above (by path induction into
the universe). In another library, it is defined as inductive
family, which is convenient because we can eliminate on a
path-over using Agda’s support for pattern matching. More-
over, the inductive family implementation does not really
require extending the semantics of type theory with this
new type constructor: If we defined PathOver C α c1 c2 as
Path {C a2} (transport C α c1) c2, then the inductive family
elimination rule is definable and satisfies the required β -
reduction rule definitionally. Therefore, assuming that every-
thing in Agda could be translated to eliminators (see [9]), the
eliminator for path-over could then be implemented in terms
of homogeneous paths, before interpreting in a model.

B. Library

Next, we give a tour of some of the facts about path-overs
that are commonly used. Though we use Agda notation, we
sometimes elide universal quantifiers, implicitly quantifying
variables with their most general types.

First, applying a dependent function to a homogeneous path
gives a path over it:

apdo : {A : Type} {C : A � Type} (f : (a : A) � C a)
{a1 a2 : A} (α : Path a1 a2)
� PathOver C α (f a1) (f a2)

apdo f id = id

The name apdo is for “dependent ap producing a path-over”.
Next, we define the pairing of paths discussed above: A

path in a Σ-type can be constructed by pairing together a path
between the left-hand sides and a path over it between the
right-hand sides:

pair= : {A : Type} {B : A � Type} {a1 a2 : A} (α : Path a1 a2)
{b1 : A a1} {b2 : A a2} (β : PathOver B α b1 b2)
� Path (a1,b1) (a2,b2)

pair= .id id = id

In fact, this is an equivalence, with inverse given by ap fst and
apdo snd—these three behave like introduction and elimina-
tion rules for paths in a Σ-type.

We have the type equivalence (written ') between PathOver
and a homogeneous equation using transport:

hom-to-over/left-eqv : Path (transport C α c1) c2
' PathOver C α c1 c2

In the special case where α is id, this gives that paths over
reflexivity are the same as paths:

hom-to-over-eqv : {A : Type} {C : A � Type}
{a1 : A} {c1 c2 : C a1}
� (Path {C a1} c1 c2)' (PathOver C id c1 c2)



Next, we have lemmas characterizing path-overs based on
the dependent type C, which are analogous to the rules for
transport in each dependent type. A path-over in a constant
fibration is the same as a homogeneous path:

PathOver-constant-eqv : {A : Type} {C : Type}
{a1 a2 : A} {c1 c2 : C} {α : Path a1 a2}
� (PathOver (λ � C) α M1 M2)' (Path c1 c2)

A path-over in a (function) composition can be re-
associated, moving part of the fibration into the path (when A
is (λ X � X), this is the equivalence between HEq and PathOver
mentioned above).

over-o-ap-eqv : {A B : Type} (C : B � Type)
{f : A � B} {a1 a2 : A} {α : Path a1 a2}
{c1 : C a1} {c2 : C a2}�
(PathOver (C o f) α c1 c2)' (PathOver C (ap f α) c1 c2)

This is the path-over equivalent of re-associating between
transport (C o f) α and transport C (ap f α).

Finally, we have rules for each type constructor. For exam-
ple for Π-types, we have

PathOverΠ-eqv : {A : Type} {B : A � Type}
{C : Σ B � Type} {a1 a2 : A} {α : Path a1 a2}
{f : (x : B a1) � C (a1,x)} {g : (x : B a2) � C (a2,x)}
� (PathOver (λ a � (x : B a) � C (a,x)) α f g)
' ((x : B a1) (y : B a2) (β : PathOver B α x y) �

PathOver C (pair= α β ) (f x) (g y))

This is a path-over version of function extensionality; it says
that two functions are equal (over α) if they take two equal
arguments (over α) to two equal results (over both α and β ,
because f x : C (a1,x) and g y : C (a2,y)). This can be proved
from the usual function extensionality for homogeneous paths.

C. Example: Circle Elimination

For the circle type S1, with constructors base : S1 and
loop : Path {S1} base base, the elimination rule is

S1-elimo : (C : S1 � Type) (b : C base)
(l : PathOver C loop c c) (x : S1) � C x

S1-elimo C b l base≡ b
β loop/elimo : Path (apdo (S1-elimo C b l) loop) l

We write S1-elimo (“S1 elimination with path-over”) for circle
elimination, which we will also call circle induction. To
eliminate from the circle into a dependent type C, we give
a point b in C base as the image of the base point, and a path
from c to itself over the loop as the image of loop. We have
a definitional computation rule for points and a propositional
computation rule for applying the eliminator (using apdo) to
the loop. By the equivalence between PathOver C loop c c and
Path (transport C loop c) c, these rules are equivalent to the
usual ones in terms of homogeneous path.

In the case for loop, we will typically “reduce” the
PathOver C loop c c goal using the type-directed moves de-
scribed above. For example, when calculating π1 (S1) [19],
circle induction is used to define a function

decode : (x : S1) � Cover x � Path base x

where Cover is the universal cover fibration. In this case, we
apply circle elimination with C x := Cover x � Path base x.
In the case for base, we supply a function loop^ :
Int � Path base base (by definition Cover base is Int). In the
case for loop, PathOverΠ-eqv is used to reduce the goal to

(x y : Cover base) (β : PathOver Cover loop x y) �
PathOver (λ p � Path base (fst p)) (pair= loop β )

(loop^ x) (loop^ y)

Because we are defining a non-dependent function,
the function’s range type does not mention snd p, so
using over-o-ap-eqv to reassociate, and then reducing
ap fst (pair= loop β) to loop, we need to show

(x y : Cover base) (β : PathOver Cover loop x y) �
PathOver (λ a � Path base a) loop (loop^ x) (loop^ y)

Cover is defined so that PathOver Cover loop x y is equivalent
to Path (x + 1) y, so we need to show

PathOver (λ a � Path base a) loop (loop^ x) (loop^ (x + 1))

For this, we need a rule for reducing PathOver in a Path type,
which we discuss next.

IV. SQUARES

To understand the rule for path-over in a path type, it is
helpful to generalize from the above example to

PathOver (λ x � Path (f x) (g x)) α β1 β2

where f g : A � B and α : Path {A} a1 a2 and β1 :
Path (f a1) (g a1) and β2 : Path (f a2) (g a2). The key idea
is that this data naturally fits into a square as follows:

f a1

f a2

g a1

g a2

ap f α

ap g α

β1 β2

A. Definition

Given points and paths that form a square
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we would like to define a type Square l t b r, where an element
of this type represents the inside of such a square. One possible
definition is as path-over in a path type:

PathOver (λ (x:A,y:A) � Path x y) (pair-line t b) l r

where pair-line is a non-dependent version of pair= for A × B,
which takes two homogeneous paths. Another is as a disc
(path-between-paths) between composites Path (l · b) (t · r). We
can also define a new inductive family dependent on four
points, which we make implicit arguments, and four lines,
representing squares:



data Square {A : Type} {a00 : A} : {a01 a10 a11 : A}
: Path a00 a01 � Path a00 a10 �

Path a01 a11 � Path a10 a11 � Type where
id : Square id id id id

All of these types are equivalent:
1) The inductive family Square l t b r
2) Path (l · b) (t · r)
3) PathOver (λ (x:A,y:A) � Path x y) (pair= t b) l r
4) A definition by path-induction:

Square l id id r = Path l r

The second definition again satisfies the inductive family
elimination rule with a judgemental β rule, so in Agda we
use the inductive family for convenience but think of it as a
derived notion semantically.

B. Library

Next, we develop some operations on squares. We have
the equivalence with discs, and the equivalence between path-
overs in a path type and certain squares:

square-disc-eqv : Square l t b r' Path (l · b) (t · r)

PathOver-=-eqv : {A B : Type} { f g : A � B}
{a1 a2 : A} {α : Path a1 a2}
{β1 : Path (f a1) (g a1)} {β2 : Path (f a2) (g a2)}
� (PathOver (λ x � Path (f x) (g x)) α β1 β2)
' (Square β1 (ap f α) (ap g α) β2)

This equivalence includes maps into and out of a path-over
in a path type, which we will write as in-PathOver= and
out-PathOver=; we use the in- and out- notation analogously
for other equivalences.

For a given path, there are horizontal and vertical reflexivity
squares, with reflexivity paths in the other dimension:

hrefl-square : {A : Type} {a00 a01 : A}
{p : Path a00 a01}� Square p id id p

vrefl-square : {A : Type} {a00 a01 : A}
{p : Path a00 a01}� Square id p p id

hrefl

id

id

p p vrefl

p

p

id id

We can apply a function to a square, yielding a square
between the action of the function on each side:

ap-square : {A B : Type} (f : A � B)
{a00 a01 a10 a11 : A} { l : Path a00 a01}
{t : Path a00 a10} {b : Path a01 a11} {r : Path a10 a11}
� Square l t b r � Square (ap f l) (ap f t) (ap f b) (ap f r)

We have rules for introducing and eliminating squares in
each type. For example, for A × B, we can pair a square in A
with a square in B to get a square in A × B, whose boundary
sides are the pairs of the sides of the given squares:

pair-line : Path {A} a0 a1 � Path {B} b0 b1
� Path (a0,a1) (b0,b1)

pair-square :
Square {A} la ta ba ra � Square {B} lb tb bb rb
� Square (pair-line la lb) (pair-line ta tb)

(pair-line ba bb) (pair-line ra rb)

Because Square is a dependent type, by path induction we
can “retype” the sides of a square by paths-between-paths:

whisker-square : {A : Type} {a00 a01 a10 a11 : A}
{ l l’ : Path a00 a01} { t t’ : Path a00 a10}
{b b’ : Path a01 a11} {r r’ : Path a10 a11}
(ll : Path l l’) (tt : Path t t’) (bb : Path b b’) (rr : Path r r’)
(s : Square l t b r) � Square l’ t’ b’ r’

This creates a new square that is the composite of the original
square s with these paths:

s

tt

bb

ll rr

We can compose squares vertically and horizontally:

_·-square-v_ : Square l t b r � Square l’ b b’ r’
� Square (l · l’) t b’ (r · r’)

_·-square-h_ : Square l t b r � Square r t’ b’ r’
� Square l (t · t’) (b · b’) r’

For example, s1 ·-square-h s2 represents the composite

s1

t

b

l r
s2

t’

b’

r’

Symmetry interchanges the horizontal and vertical sides:

square-symmetry-eqv : Square l t b r' Square t l r b

t

b

l r '

l

r

t b

Another operation we will need is Kan filling [15]. For
squares, this says that given any three sides, we can find a
fourth that fits in a square. For example:

fill-square-right : {A : Type} {a00 a01 a10 a11 : A}
(l : Path a00 a01) (t : Path a00 a10) (b : Path a01 a11)
� Σ [r : Path a10 a11 ] Square l t b r

t

b

l � fill

t

b

l r

Though both the groupoid structure (identity, composition,
inverses, the groupoid laws) and the Kan filling result from
path induction, it is illustrative to construct them directly from



each other. To derive the Kan filler, we can define the right
side r to be ! t · l · b, and then, as a disc between composites, the
required square is a Path (l · b) (t · (! t · l · b)) using the groupoid
laws. From the Kan filling we can define p · q as fst (fill p id q),
and then use snd (fill p id q) to show the groupoid laws.

C. Example: Circle induction, continued

Returning to the example from Section III-C, we need a

PathOver (λ a � Path base a) loop (loop^ x) (loop^ (x + 1))

By PathOver-=-eqv, this is the same as a

Square (loop^ x) (ap (λ � base) loop)
(ap (λ a � a) loop) (loop^ (x + 1))

After reducing the ap’s using whisker-square, we need a

Square (loop^ x) id loop (loop^ (x + 1))

But loop^ (x+1) is defined to be loop^x · loop, so we need a

Square (loop^ x) id loop (loop^ x · loop)

which is the characterization of composition as a Kan filler.

D. Square over a square

Just as we had a type for a path in a dependent type over
a path in the base, it will be useful to have a type of squares
in a dependent type over a square in the base:

data SquareOver {A : Type} (B : A � Type)
{a00 : A} {b00 : B a00} : {a01 a10 a11 : A}
{α l : Path a00 a01} {αt : Path a00 a10}
{αb : Path a01 a11} {αr : Path a10 a11}
(s : Square α l αt αb αr)
{b01 : B a01} {b10 : B a10} {b11 : B a11}
(β l : PathOver B α l b00 b01)
(β t : PathOver B αt b00 b10)
(βb : PathOver B αb b01 b11)
(β r : PathOver B αr b10 b11)
� Type where

id : SquareOver B id id id id id

A SquareOver B f β l β t βb β r relates four path-overs, each of
which lays over one side of the square s (the boundary of s and
the points in B are implicit arguments). Visually, an element
of this type is the inside of the top square in the following:

B

As

β t

β rβ l

βb
αt

α l

αb

αr

To avoid introducing a new inductive family, we could
define square-over by square induction, saying that a square
over id is a homogeneous square. Alternatively, it can be
defined as a higher disc directly, using several transports.

E. Example: Torus

The torus is generated by a point constructor, two path
constructors, and a square whose opposite sides are identified:

a : T
p : Path a a
q : Path a a
f : Square p q q p

A simply-typed function from the torus is defined by giving
the image of each constructor:

T-rec : {C : Type} (a’ : C) (p’ q’ : Path a a) (f’ : Square p’ q’ q’ p’)
� T � C

The dependent elimination rule is analogous, but the image of
each constructor lays over that constructor:

T-elim : (C : T � Type) (a’ : C a)
(p’ : PathOver C p a’ a’) (q’ : PathOver C q a’ a’)
(f’ : SquareOver C f p’ q’ q’ p’)
(x : T) � C x

For contrast, writing out the type of T-elim using homoge-
neous paths directly gives

T-elim : (C : T � Type) (a’ : C a)
(p’ : Path (transport C p a’) a’)
(q’ : Path (transport C q a’) a’)
(f’ : Path (transport (λ x � Path (transport C x a’) a’) f

((transport-· C p q) · (ap (transport C q) p’) · q’))
((transport-· C q p) · (ap (transport C p) q’) · p’))

� (x : T) � C x

and, in the absence of the square-over abstraction, this was
difficult to use in proofs.

When we prove that the torus is equivalent to the product
of two circles, we will define functions c2t and t2c, and then
use T-elim to prove (x : T) � Path (c2t (t2c x)) x. This means
that the induction formula C will itself be a path type, so for
the f’ goal, we will need to give a SquareOver in a path type.
Just as a path-over in a path type is a square, a SquareOver
in a path type is a 3-dimensional cube.

V. CUBES

Just as we had a type of square insides, dependent on
the boundary of a square, we have a type of cubes insides,
dependent on eight points, twelve lines, and six faces:

data Cube {A : Type} {a000 : A} :
{a010 a100 a110 a001 a011 a101 a111 : A}
{p0-0 : Path a000 a010} {p-00 : Path a000 a100}
{p-10 : Path a010 a110} {p1-0 : Path a100 a110}
(left : Square p0-0 p-00 p-10 p1-0)
{p0-1 : Path a001 a011} {p-01 : Path a001 a101}
{p-11 : Path a011 a111} {p1-1 : Path a101 a111}
(right : Square p0-1 p-01 p-11 p1-1)
{p00- : Path a000 a001} {p01- : Path a010 a011}
{p10- : Path a100 a101} {p11- : Path a110 a111}
(back : Square p0-0 p00- p01- p0-1)
(top : Square p-00 p00- p10- p-01)
(bot: Square p-10 p01- p11- p-11)
(front : Square p1-0 p10- p11- p1-1)
� Type where
id : Cube id id id id id id



An element of this type represents the inside of a cube

right

left

top

back
front

bot

All the points and lines are implicit arguments. The
order of faces is different than for squares: we write
Cube left right back top bot front to prioritize the left and right
sides, because we will mostly use cubes as an equality between
the left and right squares, along the “tube” given by the back
and top and bot and front. As usual, we could avoid introducing
a new inductive family by instead defining a cube using square
induction, to say that when the back, top, bottom, and front
are the identity squares, a cube is a path between the left and
the right.

Many of the lemmas about cubes are analogous to (and
dependent on) those for squares. For example, we can compose
two cubes horizontally:

_·-cube-h_ : Cube lf rt bk tp bt fr
� Cube rt rt’ bk’ tp’ bt’ fr’
� Cube lf rt’

(bk ·-square-h bk’) (tp ·-square-h tp’)
(bt ·-square-h bt”) (fr ·-square-h fr’)

We can apply a function to a cube, to get a cube between
the action of the function on each face square:

ap-cube : (f : A � B) � Cube left right back top bot front
� Cube (ap-square f left) (ap-square f right)

(ap-square f back) (ap-square f top)
(ap-square f bot) (ap-square f front)

There are symmetries that switch the dimensions, for ex-
ample moving the left side to the top, and rearranging and
applying symmetries to the other faces as necessary:

cube-symmetry-left-to-top :
Cube left right back top bot front
� Cube (square-symmetry back) (square-symmetry front)

(square-symmetry top) left
right (square-symmetry bot)

Next, there are Kan filling operations, which say “any open
box has a lid, and an inside.” For example, we can create the
left side of a cube from the other five sides:

fill-cube-left : (right : Square p0-1 p-01 p-11 p1-1)
(back : Square p0-0 p00- p01- p0-1)
(top : Square p-00 p00- p10- p-01)
(bot : Square p-10 p01- p11- p-11)
(front : Square p1-0 p10- p11- p1-1)
� Σ [ left : Square p0-0 p-00 p-10 p1-0]

Cube left right back top bot front

Cubes arise any time a square type occurs inside a path
type, or vice versa. For example, a square-over in a path type
is equivalent to a cube (we will only need logical equivalence):

SquareOver-= :
Cube (out-PathOver-= q0-) (out-PathOver-= q1-)

(out-PathOver-= q-0) (ap-square f fa)
(ap-square g fa) (out-PathOver-= q-1)

↔ SquareOver (λ x → Path (f x) (g x)) fa q0- q-0 q-1 q1-

Similarly, a path-over in a square type can be given by a cube:

in-PathOver-Square :
Cube f1 f2

(out-PathOver-= (apdo p0- δ )) (out-PathOver-= (apdo p-0 δ ))
(out-PathOver-= (apdo p-1 δ )) (out-PathOver-= (apdo p1- δ )))

� PathOver (λ x → Square (p0- x) (p-0 x) (p-1 x) (p1- x))
δ f1 f2

A typical use of cubes is to “reduce” squares up to re-
duction on their boundaries. For example, just as there is a
path between ap (g o f) p and ap g (ap f p), we would like
ap-square (g o f) s to be equal to ap-square g (ap-square f s).
However, the sides of these two squares differ by the reduc-
tions on paths. Thus, we can phrase this reduction as a cube,
which equates these two squares along the reductions between
their sides:

ap-o : Square (ap (g o f) p) id id (ap g (ap f p))
ap-square-o : (s : Square l t b r) �

Cube (ap-square (g o f) s) (ap-square g (ap-square f s))
(ap-o g f l) (ap-o g f t) (ap-o g f b) (ap-o g f r)

Similarly, the propositional reduction rules for torus recur-
sion T-rec can be phrased as squares and cubes.

βp/rec : Square (ap (T-rec a’ p’ q’ f’) p) id id p’
βq/rec : Square (ap (T-rec a’ p’ q’ f’) q) id id q’
β f/rec : Cube (ap-square (T-rec a’ p’ q’ f’) f) f’

βp/rec βq/rec βq/rec βp/rec

For p and q we have the usual paths, rephrased as horizontally
degenerate cubes. For f, we have a cube between the applica-
tion of T-rec to the face constructor and the provided image
f’, along the previous reduction rules.

VI. TORUS ' PRODUCT OF TWO CIRCLES

The main idea of the correspondence between T and S1 ×S1

is that a loop in the first component of the pair corresponds to
p, and a loop in the second component to q.

A. Torus to circles

The map from the torus to the circles uses torus recursion:

t2c : T � S1 × S1

t2c = T-rec (base,base)
(pair-line loop id)
(pair-line id loop)
(pair-square hrefl-square vrefl-square)

This function sends the point a on the torus to the point
(base,base). As the images of p and q, we need two elements
of Path {S1 × S1} (base,base) (base,base). For p, we pair
together loop on the left with reflexivity on the right; for q,
we pair reflexivity on the left with loop on the right. Next, as
the image of f, we need a square



pair-line id loop

pair-line id loop

pair-line loop id pair-line loop id

which is given by pairing together the squares

hrefl

id

id

loop loop vrefl

loop

loop

id id

B. Circles to torus

We define c2t : S1 × S1 � T to be the uncurrying of a map
c2t’ : S1 � S1 � T. For intuition, to be inverse to t2c, we
would like that c2t’ behaves as follows when applied (using
appropriate ap’s, which we omit here) to constructors:

c2t’ base base = a
c2t’ base loop = q
c2t’ loop base = p
c2t’ loop loop = f

We code matching on two arguments as nested
circle eliminations, which roughly have the form
“S1-elim (S1-elim a q) (S1-elim p f).” That is, when the
first argument is base, we get a function that sends base to
a and loop to q; when the first argument is loop, we get a
function that sends base to p and loop to f. We now make
this precise:

c2t-square-and-cube :
Σ [s : Square p (ap (S1-rec a q) loop)

(ap (S1-rec a q) loop) p]
Cube s f hrefl-square βsquare βsquare hrefl-square

c2t-square-and-cube = (fill-cube-left )

c2t’ : S1 � S1 � T
c2t’ = S1-rec (S1-rec a q)

(λ' (S1-elimo p
(in-PathOver-= (fst c2t-square-and-cube))))

The match on the first argument is a simply-typed circle
recursion, so we need a point and a loop in S1 � T. The point is
again defined by circle recursion, sending base to a and loop to
q. The loop must be a Path {S1 � T} (S1-rec a q) (S1-rec a q),
which, by (homogeneous) function extensionality, is equiv-
alent to (x : S1) � Path (S1-rec a q x) (S1-rec a q x). Us-
ing circle elimination, we need a Path {T} a a (because
S1-rec a q base ≡ a), which we take to be p, and then a
PathOver (λ x � Path (S1-rec a q x) (S1-rec a q x)) loop p p.
Applying PathOver-=-eqv to reduce a path-over in a path type
to a square, we need a square s with the type given as the first
component of c2t-square-and-cube. But (ap (S1-rec a q) loop)
reduces (propositionally) to q, and the square we want is the
f constructor for the torus composed with this propositional
reduction. Writing

βsquare : Square (ap (S1-rec a q) loop) id id q

for the reduction, it turns out to be convenient to obtain the
necessary square using Kan filling, because then we also get a
cube relating s to f along the reduction (and along reflexivity
for the p positions).

Reduction rules: Next, we prove propositional reduction
rules for c2t’ on the constructors, elaborating on the informal
versions given above. On points, c2t’ base base is indeed
judgementally equal to a. The more precise version of the
next two equations is

ap (λ x � c2t’ x base) loop = p
ap (λ y � c2t’ base y) loop = q

Proving these equations will involve reducing circle elim-
inations on the loop constructor, so they will only hold
propositionally.

For the final equation, we first need to clarify how to apply
c2t’ to the loop in both positions. For any curried function
f : A � B � C and paths α : Path {A} a a’ and β : Path {B} b b’,
there is a square

f a b

f a’ b

f a b’

f b b’

ap (λ x � f x b) α

ap (λ y � f a y) β

ap (λ y � f a’ y) β

ap (λ x � f x b’) α

defined by the iterated application of f to α and β :

apdo-ap f α β =
out-PathOver-= (apdo (λ y � ap (λ x � f x y) α) β )

To see that this type checks, for any y, the term
ap (λ x � f x y) α has type Path (f a y) (f a’ y), so applying
this to β gives a

PathOver (λ y � Path (f a y) (f a’ y)) β

(ap (λ x � f x b) α) (ap (λ x � f x b’) α)

and turning this path-over into a square gives the result. The
specific case of apdo-ap c2t’ loop loop is a square

ap (λ x � c2t’ x base) loop

ap (λ y � c2t’ base y) loop

ap (λ y � c2t’ base y) loop

ap (λ x � c2t’ x base) loop

and note that the path reduction rules above equate the sides
of this square the sides of f.

Thus, the desired propositional reduction rules for c2t’ are

c2t’-β : Σ [β l2 : Square (ap (λ y � c2t’ base y) loop) id id q ]
Σ [β l1 : Square (ap (λ x � c2t’ x base) loop) id id p ]

Cube (apdo-ap c2t’ loop loop) f β l1 β l2 β l2 β l1



This says that we want two squares for “c2t’ base loop” and
“c2t’ loop base”, and then a cube along these squares for the
reduction on “c2t’ loop loop”. It will be important below that
this cube’s top equals its bottom and front equals its back.

We could proceed by defining β l2 (as βsquare from above,
for example) and β l1 and then trying to find an appropriate
cube for the third component. However, there is a simpler
way: The only property we need of the β l1 and β l2 squares is
that they exist and fit into the cube above. Moreover, it turns
out that we can define the cube goal in such a way that it
determines suitable β l1 and β l2! In Agda, unification fills in
β l2 and β l1 from the definition of the cube.

To define a cube whose left side is (apdo-ap c2t’ loop loop)
and whose right side is f, we compose six cubes horizontally,
whose middle sides are as follows:

apdo-ap c2t’ loop loop
≡ out-PathOver=

(apdo (λ y � (ap (λ x → c2t’ x y) loop)) loop)
�= out-PathOver=

(apdo (λ y � (ap (λ f → f y) (ap c2t’ loop))) loop)
�= out-PathOver= (apdo (λ y � (ap (λ f → f y)

(λ' (S1-elimo p
(in-PathOver-= (fst c2t-square-and-cube)))))) loop)

�= out-PathOver= (apdo
(S1-elimo p

(in-PathOver-= (fst c2t-square-and-cube))) loop)
�= out-PathOver= (in-PathOver-= (fst c2t-square-and-cube))
�= fst c2t-square-and-cube
�= f

We think of this as an equation chain between these eight
squares, but the proof of each step is really a cube,
rather than a homogeneous path (we write �= to empha-
size this). In order, the justifications for the steps are (0)
by definition, (1) un-fusing ap (λ x → c2t’ x y) loop to
ap (λ f � f y) (ap c2t’ loop), (2) reducing c2t’ (which is a circle
recursion) on loop, (3) reducing ap (λ f � f y) on a function
extensionality, (4) reducing S1-elimo on the loop, (5) collaps-
ing the two sides of the PathOver-= equivalence, and (6) using
snd c2t-square-and-cube. Thus, we do what looks like an equa-
tional proof that the square (apdo-ap c2t’ loop loop) “equals”
the square f, but each step may also contribute to the back-top-
bottom-front tube that connects the boundaries of these two
squares. For example, step (6) using snd c2t-square-and-cube
contributes βsquare on the top and bottom. Because each of
the cubes used in steps (1) through (6) has the property that
its front is equal to its back and its top is equal to its bottom,
β l1 and β l2 can be defined to be the composites of these sides,
and the overall cube has the required boundary.

C. Torus to circles to torus

Next, we need to show

t2c2t : (x : T) � Path (c2t (t2c x)) x

We proceed by torus induction. In the case for a, the re-
sult holds definitionally. After a bit of massaging (using
PathOver-= to mediate between a path-over in a path type and a
square; collapsing round-trips of the PathOver-= equivalence;

using in-SquareOver-= to create a square-over from a cube;
using cube-symmetry-left-to-top to put the important faces on
the left-right sides), the remaining goals are

p-case : Square (ap (λ z � c2t (t2c z)) p) id
id (ap (λ z � z) p)

q-case : Square (ap (λ z � c2t (t2c z)) q) id
id (ap (λ z � z) q)

f-case : Cube (ap-square (λ z � c2t (t2c z)) f)
(ap-square (λ z � z) f)
p-case q-case q-case p-case

This simply says that we need to check the composite on each
of the constructors, where the case for f is a cube along the
cases for p and q. Once again, we can solve the f case and let
that determine the p and q cases. The f case is a horizontal
composition of cubes whose middle faces are as follows:

ap-square (λ z � c2t (t2c z)) f
�= ap-square c2t (ap-square t2c f)
�= ap-square c2t (pair-square hrefl-square vrefl-square)
�= apdo-ap c2t’ loop loop
�= f
�= ap-square (λ z � z) f

That is, we (1) un-fuse the ap-square using ap-square-o, (2)
reduce t2c (defined by torus recursion) on the f constructor,
(3) change an ap-square into an apdo-ap, (4) use the c2t’-β
cube for apdo-ap c2t’ loop loop, and (5) expand ap-square with
the identity function. The proof is again given as a series of
horizontal composites of cubes, and the boundary of this cube
solves the p and q cases:

p-case =
q-case =
f-case = ap-square-o c2t t2c f ·-cube-h

ap-cube c2t β fcube ·-cube-h
apdo-ap-cube-hv c2t’ loop loop ·-cube-h
snd (snd c2t’-β ) ·-cube-h
ap-square-id! f

In step (3), we use a cube

apdo-ap-cube-hv : Cube
(ap-square (uncurry f) (pair-square (hrefl p) (vrefl q)))
(apdo-ap f p q)
(ap-id-snd-square f p) (ap-id-fst-square f q)
(ap-id-fst-square f q) (ap-id-snd-square f p)

This lemma is an analogue of currying for applying a function
to a pair of paths: apdo-ap f p q (which is like “f p q”) is
the same as square-applying uncurry f to the pair of p (as a
horizontally trivial square) and q (as a vertically trivial square).
The remaining sides equate ap (uncurry f) (pair-line id q) with
ap (f a) q and similarly for the second component.

In step (5), we use a Cube s (ap-square (λ x � x) s) ... whose
remaining sides are the paths between ap (λ x � x) p and p.

D. Circles to torus to circles

Finally, we check the other composite:

c2t2c : (x y : S1) � Path (t2c (c2t’ x y)) (x,y)

The outer structure of the proof consists of nested circle
inductions, together with uses of function extensionality,



PathOver-= and in-PathOver-Square, some massaging (reduc-
ing an S1-elimo on loop and a round-trip of PathOver=), and
(for convenience) a use of cube-symmetry-left-to-top. After
applying these lemmas, the remaining goals are

loop1-case : Square (ap (λ x � t2c (c2t’ x base)) loop) id
id (ap (λ x � x,base) loop)

loop2-case : Square (ap (λ y � t2c (c2t’ base y)) loop) id
id (ap (λ y � base,y) loop)

looploop-case :
Cube (apdo-ap (λ x y � t2c (c2t’ x y)) loop loop)

(apdo-ap (λ x y � x,y) loop loop)
loop1-case loop2-case loop2-case loop1-case

That is, we need to check that the theorem holds for when the
composite is applied to loop base and base loop and loop loop.
Once again, we can solve the loop loop case and let that
determine the others. The reduction in question is a horizontal
composite of cubes with the following middle faces

apdo-ap (λ x y � t2c (c2t’ x y)) loop loop
�= ap-square t2c (apdo-ap c2t’ loop loop)
�= ap-square t2c f
�= pair-square hrefl-square vrefl-square
�= ap-square (λ x → x)

(pair-square hrefl-square vrefl-square)
�= apdo-ap , loop loop

The justifications are (1) un-fuse the apdo-ap of a compo-
sition of a functions (a lemma analogous to ap-square-o), (2)
use c2t’-β from above, (3) reduce the t2c torus elimination on f,
(4) expand ap-square (λ x � x) and (5) use apdo-ap-cube-hv to
mediate between an ap-square and a apdo-ap. The proof is the
composite of these five cubes, and loop1-case and loop2-case
are inferred by unification:

loop1-case =
loop2-case =
looploop-case =

apdo-ap-o t2c c2t’ loop loop ·-cube-h
ap-cube t2c (snd (snd c2t’-β )) ·-cube-h
β fcube ·-cube-h
ap-square-id! ·-cube-h
apdo-ap-cube-hv , loop loop

VII. THE 3×3 LEMMA

In this section, we present another example of a problem
whose formalization in Agda has been made possible using
cubical ideas. This problem, called the 3×3 lemma, has been
used in particular in the construction of the Hopf fibration and
in the computation of π4 S3.

We first need to define the notion of pushout: given three
types A, B and C and two maps f : C � A and g : C � B

A C B
f g

their pushout is the higher inductive type Pushout f g with the
following three constructors:

inl : A � Pushout f g
inr : B � Pushout f g
push : (c : C) � Path (inl (f c)) (inr (g c))

A pushout is like a sum type A + B, except certain instances of
inl and inr are “glued” together (see [29]). The corresponding
elimination rule is:

Pushout-elimo : {A B C : Type} { f : C � A} {g : C � B}
(P : Pushout f g � Type)
(l : (a : A) � P (inl a)) (r : (b : B) � P (inr b))
(p : (c : C) � PathOver P (push c) (l (f c)) (r (g c))
(x : Pushout f g) � P x

As usual, we have definitional reduction rules on points and
propositional reduction rules on paths.

The problem is now the following. Given nine types Aij,
twelve maps fij and four equalities sij as follows:

A00 A02 A04

A20 A22 A24

A40 A42 A44

f01 f03

f21 f23

f41 f43

f10

f30

f12

f32

f14

f34

s11 s13

s31 s33

where the double arrows mean that we have for instance

s11 : (x : A22) � Path (f01 (f12 x)) (f10 (f21 x))

we want to compute its “two-dimensional pushout”. There are
at least two ways to do that. We can either first compute the
pushout of each of the three lines, which fit together in a
diagram as follows:

A0•

A2•

A4•

f1•

f3•

and then compute the pushout of the resulting diagram, which
we will denote by A •. But we can also first compute the
pushouts of the three columns:

A•0 A•2 A•4
f•1 f•3

and then the pushout A• of the resulting diagram. The 3×3
lemma states that the two types A • and A• are equivalent.

First, we explain how to construct the map f1• (the maps
f3•, f•1 and f•3 are defined in a similar way). To make things
clearer, until the end of this section we will annotate the
constructors inl, inr and push by the ij corresponding to their
return type.

The map f1• : A2•� A0• is defined using the recursion rule
of the pushout. It sends the point inl2• x to inl0• (f10 x). It
sends the point inr2• x to inr0• (f14 x). Finally, the path push2• x
(which goes from inl2• (f21 x) to inr2• (f23 x)) has to be sent to
a path from inl0• (f10 (f21 x)) to inr0• (f14 (f23 x)). The path
push0• (f12 x) doesn’t work directly, because it goes from



inl0• (f01 (f12 x)) to inr0• (f03 (f12 x)), but we can compose to the
left and to the right with the equalities s11 and s13 to make the
endpoints match. Given the direction of the arrows, this can
be done conveniently using fill-square-right or an analogous
fill-square-left operation, which produces the left side of a
square from the top and right and bottom. We notate these
operations as Kan-right and Kan-left in this section.

Hence, the complete Agda definition of f1• is the following:

f1• : A2•� A0•
f1• = Pushout-rec (λ x � inl0• (f10 x))

(λ x � inr0• (f14 x))
(λ y � Kan-right (ap inl0• (s11 y))

(ap inr0• (s13 y))
(push0• (f12 y)))

To prove that A •'A• , we construct two maps back and
forth and prove that the two compositions are the identity.
Even though the statement of the problem involves only
higher inductive types (pushouts) with only point and path
constructors, we are nesting them by considering a pushout
of pushouts, so we will have to deal with squares. The
construction of the maps and of the equalities go by double
induction on the pushouts, hence there will be essentially nine
steps each time: four for the points coming from A00, A40, A04
and A44, four for the lines coming from A02, A42, A20, A40,
and one for the squares coming from A22.

It is worth noting that something nontrivial happens in
the case of the squares coming from A22. Indeed, the one-
dimensional constructor of A • is

push • : (y : A2•) � Path (inl • (f1• y)) (inr • (f3• y))

and the one-dimensional constructor of A2• is

push2• : (x : A22) � Path (inl2• (f21 x)) (inr2• (f23 x))

hence the square in A • corresponding to a point x : A22 is the
term apdo push • (push2• x) which is of type

PathOver (λ y � Path (inl • (f1• y)) (inr • (f3• y))) (push2• x)
(push • (inl2• (f21 x))) (push • (inr2• (f23 x)))

Using PathOver-=-eqv we get a square of type

Square (push • (inl2• (f21 x)))
(ap (λ y � inl • (f1• y)) (push2• x))
(ap (λ y � inr • (f3• y)) (push2• x))
(push • (inr2• (f23 x)))

Using whisker-square, we can reduce the top
and bottom. For the top: unfusing the ap gives
ap inl • (ap f1• (push2• x)), and reducing the pushout
recursion on push goes from ap f1• (push2• x) to
Kan-right (ap inl0• (s11 y)) (ap inr0• (s13 y)) (push0• (f12 x)).
Finally, using the fact that Kan operations commute with ap,
this is the same as

Kan-right (ap inl • (ap inl0• (s11 x)))
(ap inl • (ap inr0• (s13 x)))
(ap inl • (push0• (f12 x)))

Hence, the square in A • we have is of type

Square (push • (inl2• (f21 x)))
(Kan-right (ap inl • (ap inl0• (s11 x)))

(ap inl • (ap inr0• (s13 x)))
(ap inl • (push0• (f12 x))))

(Kan-right (ap inr • (ap inl4• (s31 x)))
(ap inr • (ap inr4• (s33 x)))
(ap inr • (push4• (f32 x))))

(push • (inr2• (f23 x)))

which we will shorten to

Square p21 (Kan-right p11 p13 p12) (Kan-right p31 p33 p32) p23

Note that the pij fit in the following diagram:

p12
p13

p23

p33
p32p31

p21

p11

However, when constructing the map A• � A • using a
double induction on the pushouts, we can check that what
we need is a square in A • of type

Square p12 (Kan-left p11 p31 p21) (Kan-left p13 p33 p23) p32

Hence to define the map A• � A •, we need a map between
those two square types, and in order to do the complete proof
that A• ' A • we will need an equivalence between them.

One way to do it is as follows: we first do a path induction
on p11, p13, p31 and p33 and use the fact that for every
p there is a path between Kan-right id id p and p and a
path between Kan-left id id p and p, and then we can apply
square-symmetry-eqv.

Another way to see it is as a three-dimensional cube:

p12

p13

p23

p33

p32

p31

p21

p11

If we fill the left, right, top, and bottom, the front and back
faces are exactly the two square types that we want to prove
equivalent. Thus, it suffices to observe that, by the Kan filling
operations, any four faces of a cube that form a tube determine
an equivalence between the other two opposing faces.

VIII. RELATED AND FUTURE WORK

The various definitions of path-over, and their equivalence,
were discussed during the IAS special year (see [29, Remark
6.3.2]). The idea to use inductive families to define shapes
other than lines was explored in a simplicial setting by Co-
quand (e.g. a triangle in a type). At the time, it was considered
an open question whether it was helpful to consider shapes
other than the homogeneous globes that arise by iterating the



identity type. In this paper, we have argued that there are ben-
efits to working with cube and cube-over types. Higher cubes
and cube-overs arise naturally when higher inductive types
have two-dimensional (or higher) constructors (like the torus),
when higher inductive types are nested (a pushout of pushouts,
like in the three-by-three lemma), and when eliminations on
higher inductive types are nested (like when mapping out of
two circles). Developing lemmas in terms of these abstractions
has enabled the new formalizations described in this paper.

At present, we have developed cube types in “offshoots” of
Agda homotopy type theory libraries; an interesting direction
for future work would be to revise the libraries to use cubes
throughout, and to revisit existing results to see if they can
be simplified. Another direction for future work is to define
higher cube and cube-over types in a dimension-polymorphic
way, rather than implementing each dimension in isolation, as
we have done here.

Our work is carried out in the setting of dependent type
theory with axioms for univalence and higher inductives, but
there have also been extensions of dependent type theory
based on cubical ideas. These include a type theory with
a computational interpretation of parametricity [4], and new
cubical type theories [1, 7, 11, 25] inspired by the cubical sets
model of homotopy type theory [5]. We have begun to translate
the examples discussed here to cubical type theory, to compare
these new type theories against working axiomatically. With
Cohen, Coquand, Huber, and Mörtberg, using their implemen-
tation,3 we have coded a special case of the 3x3 lemma that is
used in π4(S3), and found that the amount of memory needed
to type check is greatly reduced, because new definitional
equalities keep the proof terms smaller. To construct models
of these new cubical type theories, it would be convenient to
translate back to axiomatic homotopy type theory; the low-
dimensional libraries and examples presented here provide
some empirical evidence that this might be possible.
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